
DEBS Grand Challenge: Analysis of Market Data with Noir
Luca De Martini

luca.demartini@mail.polimi.it
Politecnico di Milano

Italy

Alessandro Margara
alessandro.margara@polimi.it

Politecnico di Milano
Italy

Gianpaolo Cugola
gianpaolo.cugola@polimi.it

Politecnico di Milano
Italy

ABSTRACT
The 2022 DEBS Grand Challenge targets the analysis of real-world
market data to define a trading strategy that triggers buy/sell advice
based on specific temporal patterns. This paper presents a solu-
tion to this problem based on Noir, a distributed data processing
framework developed at Politecnico di Milano that aims to provide
high-level programming abstractions with minimal overhead. Noir
abstracts all concerns related to deployment, concurrency, and syn-
chronization, allowing developers to concentrate on the logic of
the processing task. It simplifies the definition of a solution and
minimizes the time to develop it and make it operational, while
at the same time it does not sacrifice absolute performance. Our
experiments show that Noir can analyze millions of events per
second and deliver answers with a latency of few milliseconds.

CCS CONCEPTS
• Computing methodologies→ Parallel algorithms; • Infor-
mation systems→ Data analytics; • Applied computing;

KEYWORDS
DEBSGrandChallenge, Noir, dataflow, Rust, data processing, stream
processing, big data

ACM Reference Format:
Luca De Martini, Alessandro Margara, and Gianpaolo Cugola. 2022. DEBS
Grand Challenge: Analysis of Market Data with Noir. In The 16th ACM
International Conference on Distributed and Event-based Systems (DEBS ’22),
June 27-30, 2022, Copenhagen, Denmark. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3524860.3539646

1 INTRODUCTION
The 2022 DEBS Grand Challenge [6] targets the analysis of real-
world market data provided by Infront Financial Technology1.

The data set includes one week of trading events on three major
exchanges [5], and the challenge uses more than 50 million events
in total. Events report the trading price of over five thousand fi-
nancial instruments. Participants are asked to implement a basic
trading strategy that: (i) identifies temporal trends in the price of

1https://www.infrontfinance.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DEBS ’22, June 27-30, 2022, Copenhagen, Denmark
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9308-9/22/06. . . $15.00
https://doi.org/10.1145/3524860.3539646

individual equities by analyzing data in non-overlapping time win-
dows; (ii) triggers a buy/sell advice when the identified temporal
trends exhibit specific patterns.

In designing and implementing a solution for this task, and
in general a solution for any data-intensive problem [10], there
is always an intrinsic tension between generality and absolute
performance.

Data processing platforms that offer simple and general pro-
gramming abstractions to encode a wide range of problems are of
great value in industrial settings, as they reduce the time to develop
and deploy processing jobs to answer new business needs. This is
also acknowledged by the organizers of the DEBS Grand Challenge,
who explicitly encourage participants to provide reusable and ex-
tensible solutions. Following this need, the research community
proposed the dataflow programming model, initially incarnated in
the MapReduce framework [3], which rapidly become the standard
approach to build general-purpose, distributed data processing plat-
forms [1, 2, 13, 14]. This model expresses jobs as directed graphs of
operators, each applying a functional transformation on the input
data and feeding downstream operators with its output. It enables
data parallelism, as the same task can be executed in parallel on
different partitions of the input data, and task parallelism, as tasks
may run simultaneously on the same or different machines. The
resulting definition of data processing jobs is very concise: devel-
opers focus on the behavior of operators and how the input data is
partitioned among parallel instances, while the run time automates
deployment, scheduling, synchronization, and communication.

On the other hand, current state-of-the-art data processing plat-
forms cannot provide a level of performance that is comparable
to custom programs optimized for the specific problem at hand.
As recognized in recent literature [7, 12], custom implementations
using low-level programming primitives can yield more than one
order of magnitude performance improvements. But this comes
with a much higher difficulty in software validation, debugging,
and maintenance, as programmers are exposed to concerns related
to memory management, data serialization, communication, and
synchronization [4].

Our research group at Politecnico di Milano is trying to address
this apparent dualism between generality, ease of use, and per-
formance by developing Noir [11], a distributed data processing
platform that aims to provide the benefits of the dataflow model
with very limited overhead. Noir is written in Rust [9], a compiled
programming language that offers high-level abstractions at virtu-
ally no cost, with a trait system that statically generates custom
versions of each abstraction for different data types and avoids
dynamic dispatching. In previous work, we built dataflow-based
prototypes that could compete with custom MPI programs and de-
liver up to more than 20× higher throughput than widely adopted
open source data processing platforms such as Apache Flink [4].

https://doi.org/10.1145/3524860.3539646
https://www.infrontfinance.com/
https://doi.org/10.1145/3524860.3539646

DEBS ’22, June 27-30, 2022, Copenhagen, Denmark Luca De Martini, Alessandro Margara, and Gianpaolo Cugola

Noir is the evolution of these prototypes and brings higher expres-
siveness (e.g., support for nested iterations) and better exploitation
of resources (e.g., support for both thread-level and process-level
parallelism).

In this paper, we present our experience in using Noir to solve the
2022 DEBS Grand Challenge. We show that Noir enables for a very
compact definition of the processing jobs, abstracting all concerns
related to deployment, concurrency, and synchronization. At the
same time, it delivers a high level of performance, as it can analyze
millions of events per second, deliver answers with a latency of
few milliseconds, and scale to many cores/machines without any
change in job definition.

The paper is organized as follows: Section 2 introduces the pro-
gramming interface and architecture of Noir; Section 3 presents the
2022 DEBS Grand Challenge problem and the solution we imple-
mented in Noir; Section 4 evaluates our solution; Section 5 draws
concluding remarks.

2 NOIR IN A NUTSHELL
This section provides a high-level view of Noir, introducing its
programming interface (Section 2.1) and the main implementation
strategies that contribute to its performance (Section 2.2).

2.1 Programming interface
The core data structure in Noir is the stream, Stream<T>, repre-
senting a (bounded or unbounded) data set of elements of type
T. Streams are created from sources, for instance a file or a TCP
connection; they are processed by operators that take in input one
or more streams and apply functional transformations to produce
one or more output streams; they are collected by sinks, for instance
a file or a database, which store the final results of a sequence of
transformations. Streams can be split into independent partitions
that the platform can process in parallel if enough computational
resources are available.

The example below showcases the programming interface us-
ing the classic word count example, which counts the number of
occurrences of each word in a large document.

let result = Stream::from_readlines(&file)

.flat_map(|line| tokenizer.tokenize(line))

.map(|word| (word, 1u32))

.group_by(|(word, _count)| word.clone())

.reduce(|(_word1, count1), (word2, count2)| (word2, count1+count2))

.collect_vec();

First, from_readlines creates a source that reads from the file
passed as parameter and produces a Stream of strings, where each
element is a line in the file; flat_map transforms the input stream
of lines into an output stream of words, that is, it splits each line
into words using the function passed as parameter; map converts
each word into a pair (word, count), where count is the number
of occurrences of that word and is initially set to one; group_by
groups the data set by word, meaning that the subsequent operators
get applied to each group (that is, to each word); reduce sums all
the counts for each word; collect_vec is a sink that stores all
results in memory (in a vector).

Despite its simplicity, the example well illustrates the high level
of abstraction provided by the Noir programming interface, which

completely hides details about serialization, communication, con-
currency, and synchronization. In fact, the example can be executed
in parallel exploiting the processing cores of a single or multiple
machines by simply changing few lines in a configuration file.

Noir includes a rich library of operators, including stateful op-
erators that accumulate an internal state across invocations, split
and join operators to create parallel branches of computation and
merge them. It supports (nested) iterations, timestamps, several
types of windows and aggregation functions. Moreover, it offers a
simple API to create additional, custom operators at need.

2.2 Architecture
Internally, Noir converts each job into a dataflow graph of opera-
tors and organizes them into stages. A stage includes contiguous
operators that do not alter the way in which data is partitioned.

from_
readlines

stage 1

fr1 cv1fm1

fm2

fm3

m1

m2

m3

r1

r2

r3

gb1

gb2

gb3

stage 2 stage 3 stage 4

flat_map map group_by reduce collect_
vec

Figure 1: Dataflow graph for the word count example.

Figure 1 depicts the dataflow graph and the division in stages
for the word count example presented in Section 2.1. As Figure 1
shows, the graph has four stages, represented as dashed blocks. The
first one includes the source, which reads sequentially from a file.
The second stage starts from the flat_map operator, which consists
of multiple instances processing lines in parallel, and terminates
with the group_by operator, which partitions data elements by
word. The third stage includes the reduce operator. The last stage
includes the final sink, which collects all data into a single location.

Each stage consists of one or more parallel instances. In the
example in Figure 1, blocks are represented as dotted boxes: the
first and the last stages consist of a single block, while the second
and the third stages consist of three blocks.

Blocks are the unit of deployment. By default, Noir instantiates
a single process on each machine available in the computing infras-
tructure, and allocates one block of each stage to each processing
core (on the same or on different machines). This way, blocks of dif-
ferent stages compete for processing resources and their scheduling
is handled by the operating system with no additional overhead.

Operators within each block are executed sequentially. The com-
munication between stages takes place through in-memory Rust
channels2 (if the communicating blocks are on the samemachine) or
through TCP channels (if the communicating blocks are on multiple
machines).

2https://doc.rust-lang.org/book/ch16-02-message-passing.html

https://doc.rust-lang.org/book/ch16-02-message-passing.html

DEBS Grand Challenge: Analysis of Market Data with Noir DEBS ’22, June 27-30, 2022, Copenhagen, Denmark

Developers can configure the batching policy for each commu-
nication channel. Larger batches accumulate more data elements
before transmitting them over the channel: this choice tends to
increase throughput at the cost of a higher latency. If latency is
important, developers can reduce the batch size or set a maximum
timeout per channel.

3 IMPLEMENTING THE CHALLENGE
This section presents the problem proposed in the DEBS Grand
Challenge (Section 3.1) and the solution we implemented in Noir
(Section 3.2).

3.1 Problem definition
The 2022 DEBS Grand Challenge requires analyzing financial data
to implement a simple trading strategy [6]. The data set used for
the evaluation derives from real world data provided by Infront
Financial Technology [5] and consists of almost 60 million trading
events collected from three major exchanges in a week. Events
include five attributes: (1) symbol is a unique string identifying a
financial product and the respective exchange; (2) sec is the security
type, which can be either equity or index; (3) price is the last trade
price; (4) date is the date of the last trade; (5) time is the time of
the last trade. The date and time attributes taken together form
the timestamp of the event.

The challenge defines two queries. The first one computes quan-
titative indicators for each symbol, which are used in financial
analysis to identify trends. Specifically, the query computes expo-
nential moving averages (EMAs), which are defined (recursively)
for each symbol as follows:

𝐸𝑀𝐴
𝑗
𝑤𝑖

= 𝑐𝑙𝑜𝑠𝑒𝑤𝑖
· 2
1+𝑗 + 𝐸𝑀𝐴

𝑗
𝑤𝑖−1 · (1 −

2
1+𝑗)

Where𝑤𝑖 identifies the 𝑖th time window: in the challenge, windows
are five minutes long and non-overlapping (tumbling); 𝑐𝑙𝑜𝑠𝑒𝑤𝑖

is
the closing price for the symbol within window𝑤𝑖 , i.e., the price
of the last event received within𝑤𝑖 ; 𝑗 is the smoothing factor: the
query in the challenge computes 𝐸𝑀𝐴𝑠 with 𝑗 = 38 (𝐸𝑀𝐴38) and
with 𝑗 = 100 (𝐸𝑀𝐴100).

The second query looks for patterns in the 𝐸𝑀𝐴38 and 𝐸𝑀𝐴100

indicators to generate buy/sell advice. In particular, the query trig-
gers a buy advice for a symbol when 𝐸𝑀𝐴38 overtakes 𝐸𝑀𝐴100 for
that symbol, that is when:

𝐸𝑀𝐴38
𝑤𝑖

> 𝐸𝑀𝐴100
𝑤𝑖

∧ 𝐸𝑀𝐴38
𝑤𝑖−1 ≤ 𝐸𝑀𝐴100

𝑤𝑖−1

Symmetrically, the query triggers a sell advice for a symbol when
𝐸𝑀𝐴100 overtakes 𝐸𝑀𝐴38 for that symbol, that is when:

𝐸𝑀𝐴38
𝑤𝑖

< 𝐸𝑀𝐴100
𝑤𝑖

∧ 𝐸𝑀𝐴38
𝑤𝑖−1 ≥ 𝐸𝑀𝐴100

𝑤𝑖−1

The challenge provides an evaluation platform that exposes a
gRPC-based API to receive input events and to submit the query
results computed.

Input events are organized in batches. Each batch contains a
sequence of events from the input data set and a set of symbols the
evaluation platform subscribes to.

As response to the first query, the evaluation platform expects,
for each batch and for each symbol it is subscribed to, the latest
𝐸𝑀𝐴38 and 𝐸𝑀𝐴100 indicators.

As response to the second query, the evaluation platform expects,
for each batch and for each symbol it is subscribed to, the last three
sell/buy advice.

3.2 Solution in Noir

c1

rfm1

rfm2

rfm3

gb1src

gRPC

sink

flat_map group_by

fm1
batch

batch
 events/
subscriptions

results

results

results

rich_filter_map
collect

Figure 2: Implementation of the 2022 DEBS Grand Challenge
in Noir: architecture of the solution.

Figure 2 shows the architecture of the solution we implemented
in Noir. A gRPC module handles the communication between the
evaluation platform and the main Noir engine. It consists of a
gRPC source (src in Figure 2) that fetches input batches from the
evaluation platform and a gRPC sink that submits query results
to the evaluation platform. Figure 2 shows gRPC communication
channels as dotted lines. The gRPCmodule communicates with Noir
via flume asynchronous channels3 (represented as dashed lines in
Figure 2).

The core of the dataflow graph used in Noir to solve the challenge
consists of four operators. A flat_map splits each batch 𝑏 into
its constituting parts and propagates downstream all events in 𝑏,
followed by all subscriptions in 𝑏. Events and subscriptions are
partitioned by symbol (group_by), which enables the subsequent
rich_filter_map to process different symbols in parallel (Figure 2
shows three parallel instances as an example).

A rich_filter_map is a default operator in Noir that accumu-
lates state (hence the name rich) and produces either zero (filter)
or one (map) output elements for each input element. We use the
state in the operator to store (i) the information required to compute
the 𝐸𝑀𝐴38 and 𝐸𝑀𝐴100 indicators for each symbol: the value of
𝐸𝑀𝐴38 and 𝐸𝑀𝐴100 in the previous window and the last price in
the current window; (ii) the last buy/sell advice per symbol. Upon
receiving an event, the operator updates its internal state without
producing any result. Upon receiving a subscription, the operator
emits the current results for the two queries.

Finally, a collect operator collects the results produced for the
various symbols and submits them back to the gRPC sink. As the
gRPS src and sink are part of the same module, they know the
number of results to expect for each batch (that is, the number of
subscriptions within that batch), so the sink can determine when
all results for a batch have been received and can be submitted to
the evaluation platform.

All components except the gRPCmodule were already present in
the standard Noir library, and the gRPCmodule can be easily reused.
In fact, when approaching the challenge, we observed that the

3https://github.com/zesterer/flume

https://github.com/zesterer/flume

DEBS ’22, June 27-30, 2022, Copenhagen, Denmark Luca De Martini, Alessandro Margara, and Gianpaolo Cugola

communication with the evaluation platform could easily become
a bottleneck. Hence, we payed particular attention in engineering
the gRPC module. In the final solution, both the gRPC src and
the gRPC sink open parallel connections with the communication
platform and handle the communication over these connections
using asynchronous tasks. Both the number of connections and
the number of threads processing the tasks in parallel can be set
as configuration parameters: in the evaluation platform, we used 6
input connections and 4 threads.

Order. Input events may be received out of (timestamp) order,
as events in the data set were originally produced from multiple
sources not guaranteed to be synchronized with each other. The
evaluation platform does not produce any watermark, i.e., we can
never know if further elements with a lower timestamp will ever
be produced. Our implementation closes a window𝑤 for a given
symbol 𝑠 upon receiving for the first time an event with symbol 𝑠
and timestamp larger then the closing time of𝑤 . For each window,
it computes the 𝐸𝑀𝐴38 and 𝐸𝑀𝐴100 indicators with the latest (in
timestamp order) price received before closing the window.

Visualization. A bonus request for the challenge was a smart
visualization of the results.We implemented it as an optional feature
using standard components for data management, analysis, and
visualization.

When the feature is enabled, the parallel rich_filter_map op-
erators submit the 𝐸𝑀𝐴38 and 𝐸𝑀𝐴100 indicators to a Redis4 in-
memory database, using the RedisTimeSeries module5. The com-
munication with Redis happens over TCP channels, so Redis can
be installed on any machine. The communication is handled as an
asynchronous task: in Section 4 we measure the overhead of adding
this feature.

Figure 3: Smart visualization feature using Grafana.

4https://redis.io
5https://redis.io/docs/stack/timeseries/

The actual visualization is implemented as a dashboard inGrafana6,
which shows the temporal evolution of the 𝐸𝑀𝐴38 and 𝐸𝑀𝐴100

indicators for each symbol within one graph. Figure 3 shows a
screenshot of the dashboard.

4 EVALUATION
Participants to the 2022 DEBS Grand Challenge had the opportunity
to deploy their solution onto one or more machines located in the
same cluster as the evaluation platform. We conducted several
experiments on this platform, and we report our main findings in
Section 4.1. To better assess the scalability of our solution, we also
deployed it on alternative infrastructures and tested more financial
indicators, as we discuss in Section 4.2. Finally, Section 4.3 studies
the overhead of smart visualization.

4.1 Grand Challenge evaluation platform
To assess the performance of our solution, we measure the total
execution time and the latency per batch. The total execution time
indicates how long a given configuration takes to fully process all
the batches submitted by the evaluation platform: the input data set
consists of 5940 batches, each containing 10 k events (for a total of
about 59.4 million events) and subscriptions to 15 different symbols.
We measure the total execution time from the moment when we
submit the first gRPC request to the moment when we submit the
query results for the last batch. The throughput of the system can be
derived by dividing the total execution time by the overall number
of events.

The latency per batch is the difference between the time when
we receive a batch and the time when we submit the query results
for that batch. For each experiment, we report the 10th percentile,
the median, and the 90th percentile latency per batch. This measure
differs from the latency observed by the benchmarking platform
used in the Grand Challenge, as it does not include network latency.

Figure 4 shows how the performance of our solution changes
when increasing the amount of parallelism, i.e., the number of
blocks Noir allocates for the operators that compute the indicators
(operator rich_filter_map in Figure 2).

The machine provided in the platform had an Intel Haswell CPU
with 4 cores, so we changed the level of parallelism from 1 to 4.
As Figure 4 shows, neither the overall execution time (Figure 4a)
nor the latency per batch (Figure 4b) change significantly when
increasing the parallelism. We see two motivations for this: (i) read-
ing data from the network represents the main bottleneck; (ii) the
queries are not computationally expensive, as they only require
storing the latest value for each window and performing a simple
arithmetic computation when a window closes.

We investigate the second hypothesis in Section 4.2 by using
alternative indicators and deployment infrastructures. To validate
our first hypothesis, we study the performance of our solution while
changing the number of parallel gRPC connections used to fetch
input data (with a fixed parallelism of 4). As Figure 5a shows, the exe-
cution time decreases when we increase the number of connections,
and becomes stable with about 5 connections: at this point, Noir is
processing data at about 2.5 Gbit/s and this appears to be the maxi-
mum we can obtain regardless of other configuration parameters.
6https://grafana.com

https://redis.io
https://redis.io/docs/stack/timeseries/
https://grafana.com

DEBS Grand Challenge: Analysis of Market Data with Noir DEBS ’22, June 27-30, 2022, Copenhagen, Denmark

1 2 3 4
Parallelism (number of blocks per stage)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ex
ec

 ti
m

e
(s

)

(a) Execution time

1 2 3 4
Parallelism (number of blocks per stage)

0

5

10

15

20

25

La
te

nc
y

pe
r b

at
ch

 (m
s) 90th percentile

median
10th percentile

(b) Latency

Figure 4: Effect of parallelism.

We suspect we reached the maximum bandwidth of the network
interface. While the execution time decreases, Figure 5b shows that
the latency per batch increases with the number of connections:
this is because multiple batches are processed in parallel and the
time to collect all query results for each individual batch increases.
The final solution we submitted for the DEBS Grand Challenge
adopts 6 connections, which delivers the maximum throughput
with a limited cost in terms of latency.

4.2 Scalability
To study the scalability of our solution, we (i) implemented addi-
tional, more computationally expensive financial indicators; (ii) de-
ployed Noir on alternative infrastructures that offer a higher num-
ber of processing cores. We report the results we measured in
Figure 6: in these experiments, we removed the bottleneck of net-
work communication and serialization, simulating ingestion by
artificially generating input data7

As additional indicators we implemented Moving Average Con-
vergence Divergence (MACD)8 and an indicator based on three
simple moving averages (SMA)9. Figure 6 presents both the results

7We used the same symbols, batch size, and number of subscriptions as in the DEBS
Grand Challenge evaluation platform, but generated data randomly, so the results may
differ from those of the DEBS Grand Challenge data set.
8https://www.investopedia.com/terms/m/macd.asp
9https://www.investopedia.com/terms/s/sma.asp

1 2 3 4 5 6 7 8
Number of parallel gRPC connections

0

10

20

30

40

50

60

70

80

Ex
ec

 ti
m

e
(s

)

(a) Execution time

1 2 3 4 5 6 7 8
Number of parallel gRPC connections

0

10

20

30

40

50

La
te

nc
y

pe
r b

at
ch

 (m
s) 90th percentile

median
10th percentile

(b) Latency

Figure 5: Effect of number of gRPC connections.

when using only the DEBS Grand Challenge indicators (GC-22
indicators) and the results when using also the additional indica-
tors (Extended indicators).

We run our experiments on the Amazon EC2 cloud infrastructure,
using a M5n instance offering 16 virtual CPU cores and 64 GB or
RAM (Figure 6a) and on a local laptop equipped with a M1 Max
CPU with 10 cores and 32 GB of RAM.

In the experiments, we change the level of parallelism, i.e., the
number of blocks used to process events in parallel, and wemeasure
the average execution time per batch by dividing the total execution
time by the number of input batches. We run each experiment for at
least 50 s and we discard the first 5 s to make sure that the system
is in a steady state.

On both deployments, the execution time per batch decreases
when moving from a parallelism of 1 to a parallelism of 4, but then it
stabilizes or even slightly increases when using a higher parallelism.
In both cases, the use of additional indicators adds computational
complexity, but Noir handles this complexity by using the available
resources: as a results, it delivers the same performance with the
Grand Challenge indicators and with the extended indicators with
a parallelism of 4 or higher.

In absolute terms, as each batch contains 10 k events, Noir is
processing over 10 million events per second in the Amazon EC2

https://www.investopedia.com/terms/m/macd.asp
https://www.investopedia.com/terms/s/sma.asp

DEBS ’22, June 27-30, 2022, Copenhagen, Denmark Luca De Martini, Alessandro Margara, and Gianpaolo Cugola

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Parallelism (number of blocks per stage)

0

1

2

3

4

5

6

Ex
ec

 ti
m

e
pe

r b
at

ch
 (m

s) GC-22 indicators
Extended indicators

(a) Amazon EC2 (M5n instance, 16 vCPUs)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Parallelism (number of blocks per stage)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ex
ec

 ti
m

e
pe

r b
at

ch
 (m

s) GC-22 indicators
Extended indicators

(b) Local (M1 Max, 10 cores)

Figure 6: Scalability with different workloads and deploy-
ment infrastructures.

deployment and almost 20 million events per second in the local
deployment.

4.3 Overhead of smart visualization
The results presented so far do not include smart visualization. We
implemented this feature by storing indicators as time series in the
Redis in-memory database, so its cost is ultimately determined by
the performance of Redis, and in particular by the rate at which it
accepts new values.

We repeated the experiments on Amazon EC2, deploying Redis
on the same instance as Noir. In this setting, the processing time
was largely dominated by the time required to ingest new data
in Redis, leading to an average execution time per batch of about
19 ms (about 500 k events per second) with smart visualization.

This means that the overall throughput decreases by almost 20×
as writing into the database become the bottleneck. Indeed, the data
set contains one week of events and two indices need to be updated
every five minutes, leading to over 4 k updates per symbol. As there
are more than 5 k symbols, we need to write about 20 million values
to the database: although Redis can sustain over 100 k updates per
second, it still remains the main bottleneck of the system. We plan
to investigate alternative solutions to store time series that may
sustain a higher ingestion rate [8].

5 CONCLUSIONS
This paper presented a solution to the 2022 DEBS Grand Challenge
based on Noir, the distributed batch and stream processing platform
we are developing at Politecnico di Milano [4, 11].

Noir aims to offer a high level of abstraction and ease of use, com-
parable to that of state-of-the-art data processing systems, while
reducing as much as possible the overhead with respect to custom
solutions. It is implemented as a library in Rust that developers can
use to compile highly optimized parallel and distributed programs
for data analysis.

In this paper, we provided a high-level view of Noir and we
discussed how we implemented the 2022 DEBS Grand Challenge
on top of it. We analyzed the performance of our solution using
different deployment infrastructures, configuration parameters, and
workloads. Noir could process over ten million events per second
on a single machine, processing one week of financial data coming
from three major exchanges within few seconds.

REFERENCES
[1] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.

Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and Sam Whittle. 2015. The Dataflow Model: A Practical Approach
to Balancing Correctness, Latency, and Cost in Massive-scale, Unbounded, Out-
of-order Data Processing. Proceedings of VLDB Endow. 8, 12 (2015), 1792–1803.

[2] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink™: Stream and Batch Processing in a
Single Engine. IEEE Data Engineering Bulletin 38, 4 (2015), 28–38.

[3] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM 51, 1 (2008), 107–113.

[4] Alessio Fino, Alessandro Margara, Gianpaolo Cugola, Marco Donadoni, and
Edoardo Morassutto. 2021. RStream: Simple and Efficient Batch and Stream
Processing at Scale. In 2021 IEEE International Conference on Big Data (Big Data
’21). IEEE, 2764–2774. https://doi.org/10.1109/BigData52589.2021.9671932

[5] Sebastian Frischbier, Jawad Tahir, Jawad Doblander, Arne Hormann, Ruben
Mayer, and Hans-Arno Jacobsen. 2022. DEBS 2022 Grand Challenge Data Set:
Trading Data. https://doi.org/10.5281/zenodo.6382482

[6] Sebastian Frischbier, Jawad Tahir, Jawad Doblander, Arne Hormann, Ruben
Mayer, and Hans-Arno Jacobsen. 2022. The DEBS 2022 Grand Challenge: De-
tecting Trading Trends in Financial Tick Data. In Proceedings of the 16th ACM
International Conference on Distributed and Event-based Systems (DEBS ’22). ACM,
New York, NY, USA.

[7] Patricia González, Xoán C. Pardo, David R. Penas, Diego Teijeiro, Julio R. Banga,
and Ramón Doallo. 2017. Using the Cloud for Parameter Estimation Problems:
Comparing Spark vs MPI with a Case-Study. In Proceedings of the International
Symposium on Cluster, Cloud and Grid Computing (CCGrid ’17). IEEE Press, 797–
806.

[8] Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. 2017. Time
Series Management Systems: A Survey. IEEE Transactions on Knowledge and Data
Engineering 29, 11 (2017), 2581–2600.

[9] Steve Klabnik and Carol Nichols. 2018. The Rust Programming Language.
[10] Alessandro Margara, Gianpaolo Cugola, Nicoló Felicioni, and Stefano Cilloni.

2022. A Model and Survey of Distributed Data-Intensive Systems. https:
//doi.org/10.48550/ARXIV.2203.10836

[11] Edoardo Morassutto and Marco Donadoni. 2021. Noir : design, implementation
and evaluation of a streaming and batch processing framework. http://hdl.
handle.net/10589/180143

[12] Jorge L. Reyes-Ortiz, Luca Oneto, and Davide Anguita. 2015. Big Data Analytics
in the Cloud: Spark on Hadoop vs MPI/OpenMP on Beowulf. Procedia Computer
Science 53 (2015), 121–130. INNS Conference on Big Data.

[13] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. 2013. Discretized Streams: Fault-tolerant Streaming Computation at
Scale. In Proceedings of the Symposium on Operating Systems Principles (SOSP ’13).
ACM, 423–438.

[14] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, JosephGonzalez, Scott Shenker, and Ion Stoica. 2016. Apache
Spark: A Unified Engine for Big Data Processing. Commun. ACM 59, 11 (2016),
56–65.

https://doi.org/10.1109/BigData52589.2021.9671932
https://doi.org/10.5281/zenodo.6382482
https://doi.org/10.48550/ARXIV.2203.10836
https://doi.org/10.48550/ARXIV.2203.10836
http://hdl.handle.net/10589/180143
http://hdl.handle.net/10589/180143

	Abstract
	1 Introduction
	2 Noir in a Nutshell
	2.1 Programming interface
	2.2 Architecture

	3 Implementing the challenge
	3.1 Problem definition
	3.2 Solution in Noir

	4 Evaluation
	4.1 Grand Challenge evaluation platform
	4.2 Scalability
	4.3 Overhead of smart visualization

	5 Conclusions
	References

