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ABSTRACT
The DEBS Grand Challenge is an annual competition in which
participants strive to build the fastest and most scalable distributed
and event-based systems that solve a practical problem. For the year
2022, the challenge focuses on real-time complex event processing
of real-world high-volume financial trading data. The goal is to
efficiently compute specific trend indicators and detect patterns
that would assist real-life traders in deciding to buy or sell on the
financial markets. This paper aims to solve the above challenge
using Apache Flink [1] – an open-source, unified stream-processing
and batch-processing framework developed by the Apache Software
Foundation.
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1 INTRODUCTION
The DEBS Grand Challenge is a yearly competition in which partic-
ipants solve a particular task by performing stream data processing
techniques on given event-based data. The 2022 DEBS Grand Chal-
lenge [3] provides real-world high-volume streams of financial
trading data and sets the goal for participants to efficiently com-
pute trend indicators and detect patterns used by real-life traders
in making trading decisions (i.e., buying or selling) on the financial
markets [2]. Besides fundamental trading, algorithmic trading is
a widely-used approach that allows traders, analysts, and other
stakeholders to identify trends, whether upwards or downwards,
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in the price development of a symbol of their interest early on.
This paper uses Apache Flink [1] to connect with the provided data
sources and uses custom windows to process the market data and
compute the solutions. Our code is available on GitHub [6].

The data [4] provided by the competition includes 289 million
tick data events for 5504 equities and indices that are traded on
three European exchanges: Paris (FR), Amsterdam (NL), and Frank-
furt/Xetra (ETR). Among all data events, we only consider the data
events containing the attributes that are relevant for the Grand
Challenge queries. The relevant attributes include the unique iden-
tifier for a symbol and its respective exchange, security type (i.e.,
equity or index), last trade price, trading time, and trading date.

The challenge involves two tasks. The first task is to calculate
two exponential moving averages, EMA(38) and EMA(100), for each
symbol. The exponential moving average is an essential quantitative
indicator used in technical analysis to identify trends. The second
task is to identify breakout patterns for each symbol by tracking its
two exponential moving averages over different intervals. There
are two breakout patterns: a bullish breakout indicates a buying
opportunity, and a bearish breakout generates sell advice. As data
events arrive in batches, a framework that can efficiently process
incoming batches of data is required to determine the solutions to
the two tasks.

2 BACKGROUND
Apache Flink [1] is an open-source framework and distributed
processing engine for stateful computations over unbounded data
streams. Flink’s design enables the system to perform operations
at in-memory speed and at any scale. Every application in Flink
can be logically described in the form of a Directed Acyclic Graph
(DAG) where each node of the graph is an operator with a spe-
cific function. Operators in Flink can be of two types, stateful and
stateless. The stateless function does not store any data whereas
stateful functions maintain a state and store data to process future
events. Flink guarantees exactly-once semantics for both kinds of
operators. In other words, Flink can ensure that each incoming
event affects the internal state exactly once under failures. For fault
tolerance and recovery purposes, the state is stored in persistent
storage at regular intervals by checkpointing.

Every program in Flink has an execution environment that pro-
vides functions to control the execution of a job (such as parallelism,
checkpointing, logging, etc.) and also to interact with the outer
world, i.e. incoming streams of data. The context in which a stream-
ing program is executed is called a StreamExecutionEnvironment.

Flink programs ingest data from various sources using source
functions which act as the entry point for data streams. A Rich-
SourceFunction is the base class for implementing a parallel data
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source that has access to the context information and additional
life-cycle methods.

The KeyedProcessFunction is a stream processing operation that
provides the basic building blocks such as events, state, and timer
to all acyclic streaming applications. The KeyedProcessFunction has
access to the keyed state and timers. It handles events by getting
invoked every time a new event is received from a keyed data
stream. This function is used to transform the input streams into
results by the program logic. For fault tolerance, the function gives
access to the keyed state through the RuntimeContext.

Stateful operations rely on a state to remember information
across multiple events, and Flink provides different state backends
that specify how and where the state is stored. Keyed state, in
particular, is maintained in an embedded KV store. The state is
partitioned and distributed strictly together with the streams read
by the stateful operators. The keyed state provides access to dif-
ferent types of states that are all scoped to the current event’s key,
and thus can only be used on keyed streams. The alignment of
streams’ keys and state ensures that all state updates are local and
guarantees consistency without adding transaction overhead. It
also allows Flink to redistribute the state and adjust the stream
partitioning transparently.

The results obtained in the Flink program can be published by
adding them to a sink. The invoke() function is executed each time
an event is encountered by the sink, through this function, the re-
sult is published to the chosen destination. The RichSinkFunction is
a kind of sink function which not only provides basic sink function-
ality but also includes other utility methods such as initialization,
tear-down, state management functions, etc.

3 DESIGN

Data Source
keyBy

Keyed stream by stock symbols

process
Put events into 5-minute event

time tumbling windows and send
symbolResult when subsribed.
When window trigger is fired,
evaluate Query1 and Query2

keyBy
Keyed stream by batch ID

process
Collect symbolResults of all
subscribed symbols in a batch
and send back query results

Sink
End benchmark when last event seen

Figure 1: Application Design

In this section, we will discuss the design of our solution. We
will talk about our implementation in detail in the next section.

We have chosen the data-stream approach for our solution, mean-
ing that we model the incoming batch of data as a stream of data.
Data is retrieved from the given competition platform in batches.
Each batch contains a list of Event objects defined by the competi-
tion.

Next, we put those objects into the data stream. Using the event’s
symbol name as the key, we keyed the stream using the keyBy
operator and then pushed them through a custom window process
operator. Here, both queries are evaluated for each symbol every 5
minutes of event time. The output of this operator is then keyed by
the event’s batch ID and forwarded to another processing operator.
Here, the results of those queries for each batch are sent back to
the competition platform for evaluation. Finally, the events will be
forwarded to the sink.

We also have a functional graphic user interface that utilizes the
output of our stream processing application to display the results,
much similar to a trading platform.

4 IMPLEMENTATION
In this section, we will discuss how we implemented our design for
the solution. First, we will talk about how data is retrieved, then
how that data will be used in evaluating the two queries given by
the challenger. We will also be going through the technical aspects
of the implementation of the two queries.

4.1 Data Retrieval
The challenger.proto file provided generates the sources that en-
able communication to the evaluation platform to fetch the data.
We create a channel and a new benchmark that uniquely specifies
the evaluation instance we are running. A Remote Procedure Call
(gRPC) is used to maintain communication with the server. The
data source, GrpcClient extends the RichSourceFunction where we
start the benchmark. The data is received in batches. Each batch
contains a list of events, a list of lookup symbols, the batch sequence
ID, and a boolean value that indicates whether the batch is the last
batch of the evaluation run. The lookup symbol list indicates the
symbols (a symbol refers to an identifier consisting of a unique
string together with the exchange code of the exchange that the
instrument is being traded on) for which we have to send the query
results after the batch has been processed. Each batch has a different
set of lookup symbols. We iterate over the event list and wrap each
with a SymbolEvent object and put it into the data stream. After we
have placed all the events in a batch into the data stream, we put
a dummy event for each symbol present in the symbol lookup list
for the batch onto the data stream to act as a marker indicating the
end of the batch.

DataStream<SymbolEvent> events = env
.addSource(grpc)
.name("API")
.rebalance()
.assignTimestampsAndWatermarks(

WatermarkStrategy.forMonotonousTimestamps();

4.2 Data Processing
We key the data stream by the symbol since we have to generate
the query result for each symbol. The SymbolQueryProcess extends
the KeyedProcessFunction processes each event keyed by the symbol
value. The KeyedProcessFunction, an extension of the ProcessFunc-
tion, gives access to the key of timers in its onTimer() method. For
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each event, we place the event within a 5-minute event time tum-
bling window, register the TimerService for the window trigger
timestamp and update the last trading price for the window. Since
the TimerService deduplicates timers per key and timestamp, i.e.,
there is at most one timer per key and timestamp. If multiple timers
are registered for the same timestamp, the onTimer() method will
be called just once.

DataStream<SymbolResult> symbolResultDataStream =
events

.keyBy(symbolEvent -> symbolEvent.getSymbol())

.process(new SymbolQueryProcess(Time.minutes(5)));

At the end of a 5-minute event time window for a symbol, Flink
invokes the onTimer method, where we calculate the EMA values
and crossover events for the symbol. The EMA value is calculated
using the window’s last trading price and the corresponding EMA
values of the previous 5-minute tumbling window for the symbol.
The crossover values are calculated from the newly evaluated EMA
values and the previous window’s EMA values. We will update
the last crossover event if there is a crossover of corresponding
previous and new EMA values. We have to keep track of the last
three crossover events, so we shift the crossover events back for
each new one.

if (ema38Prev <= ema100Prev && ema38New > ema100New) {
if (secondLastCrossover.value() != null)

thirdLastCrossover.update(Tuple2.of(
secondLastCrossover.value().f0,
secondLastCrossover.value().f1));

if (lastCrossover.value() != null)
secondLastCrossover.update(Tuple2.of(
lastCrossover.value().f0,
lastCrossover.value().f1));

lastCrossover.update(Tuple2.of(timestamp, 0L));
} else if (ema38Prev >= ema100Prev &&

ema38New < ema100New) {
if (secondLastCrossover != null)

thirdLastCrossover.update(Tuple2.of(
secondLastCrossover.value().f0,
secondLastCrossover.value().f1));

if (lastCrossover != null)
secondLastCrossover.update(Tuple2.of(
lastCrossover.value().f0,
lastCrossover.value().f1));

lastCrossover.update(Tuple2.of(timestamp, 1L));
}

Now consider the scenario when we have to send the symbol EMA
and crossover values if the symbol has been subscribed for in a
batch. In the source, we set dummy events for each symbol in
the lookup symbol list of a batch. When the KeyedProcessFunction
receives this dummy event, it will collect the current keyed state
EMA and crossover event values in a SymbolResult object and some
batch details and send them forward to the next operator.

4.3 Sending Results
We then key the resultant SymbolResult data stream by the batch
ID since we have to send the query results for each batch. We send
along from the source in the dummy event the number of subscribed
symbols for the batch. This value is used in the BatchResultProcess
to keep track of the number of SymbolResults it has received. When
the number of SymbolResult received for the batch reaches the
lookup symbol count, it accumulates all the SymbolResult values
into Query 1 and Query 2 result responses. The gRPC client sends
these values back to the evaluation platform.

DataStream<Tuple2<Long, Boolean>>
batchResultDataStream = symbolResultDataStream
.keyBy(symbolResult -> symbolResult.getBatchId())
.process(new BatchResultProcess());

Finally, we use the sink to keep track of the number of batches
evaluated so far and end the benchmark when we have processed
all the batches. Since Flink is a framework for continuous data
processing and streaming programs usually run indefinitely, there
is no standard method to stop the application gracefully. The last
batch of an evaluation run contains an indicator to know when we
can stop the source connection. We pass this indicator to the down-
stream operators in the dummy event. When the last batch has
been processed and reaches the sink, we store the corresponding
batch ID of the last batch. Now since we parallelize processing, it is
possible that the last batch received is not necessarily the last batch
processed. So we have to keep count of the number of batches pro-
cessed, but since the batch IDs are sequential, we know for sure we
can receive at most the last batch ID number of batches. Even if the
last batch were to be processed earlier or is the last to be processed,
when it is received at the sink, we would update the number of
batches we are expecting and check if the processed batch count is
equal to the last batch ID. If so, it will end the benchmark or keep
waiting until all batches are processed, and the condition is met.

batchResultDataStream.addSink(new BlackHole(benchmark));

5 GRAPHICAL USER INTERFACE
5.1 Design
Designing the frontend required that it can be run separately from
the main application and it did not impact the performance of the
main application. To decouple the main application from the fron-
tend, we use a message queue. As the main application is uploading
its query 1 and query 2 results, it also publishes these results as
messages to a message broker. This is seen in (step 1) Figure 2.

Concurrently, we create a consumer process that is off the critical
path of the main program. The consumer consumes messages (step
2) and writes them to a database (step 3). To see the results, we
simply create a frontend that queries the database at some time
interval and visualizes the collected data (step 4).

The reason we use a message queue, instead of writing to a data-
base directly, is because databases take much longer to write to, and
using a message queue allows us to do some further processing to
format the data of the main application for writing to the database.
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Figure 2: GUI

It is also not feasible to stream data directly from the main appli-
cation to the frontend because there may be many instances of the
frontend, slowing down the main application.

The database is not necessary, and the frontend itself can act as
a consumer and show the data as it comes in, but accessing data
that is older would not be possible.

5.2 Implementation
The main application has to be started with the SEND_TO_KAFKA
environment variable set. When this is set, it will create producers
for the results of queries 1 and 2 and publish the data on each batch
completion. The main application produces query 1 results to topic
’query1’ and query 2 results to topic ’query2’.

We chose to use Kafka as our message queue because it is fault-
tolerant, highly available, and can prevent data loss. It allows for
complex publish-subscribe systems and was perfect for our use
case.

The consumer is a simple Node.js process that subscribes to both
of the query topics and for each message writes it to a time-series
database.

Time-series databases are simply databases that have been opti-
mized for use with time-series data (e.g. query 1 and query 2). We
chose to use QuestDB as opposed to a popular alternative InfluxDB,
as it self-reports to be able to ingest at 6.4 times the rate at 1.4
million records per second.

For the frontend, we build the graphics using React, a frontend
framework that automatically handles changes in data and updates
the UI accordingly. It is modular, extendable, and easily maintain-
able. For serving the webpage and making requests to the database,
we use the Express library with Node.js.

Launching all of this machinery is tedious done manually, run-
ning the application is easier done with Docker Compose. It con-
tainerizes Kafka, the consumer processes, the database, and the
frontend. By containerizing everything, it is feasible to scale the
frontend servers and consumer processes easily.

5.3 Results
The frontend is responsive, polls the database every one second,
and clicking a symbol outputs a graph of the last 15 minutes of
data.

Figure 3: Desktop Screenshot

Figure 4: Mobile Screenshot

6 RESULTS
6.1 Setup
The application was built using Java and Apache Flink version 1.14.4
on a Ubuntu installation. The application was deployed on a cluster
of 3 virtual machines (VMs) each having 4 cores and 8GB of main
memory. The configuration at the time of deployment comprised
of default parallelism set to 1 (as the parallelism of each operator
was specified in the code), the job manager memory set to 1700
MB, and the task manager memory set to 7680 MB. The memory
allocated for the task manager included all memory usage within
the task manager process including the JVM metaspace and other
overheads. The number of task slots was set to 4 as 4 cores were
available for processing. To maximize the throughput and minimize
latency, logging was disabled for the application. In-memory state
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backend was used for operators with the state as it has 10X faster
transfer time when compared to the other state backend in Flink,
i.e. RocksDB.

6.2 Deployment
It was observed that the application produced 3X better results
when deployed on a cluster of 3 VMs as compared to a single
machine with 12 cores keeping the memory and operating system
the same. During deployment, different configurations with varying
memory distributions between job manager and task manager were
compared to get the best performance. The configuration stated
above resulted in the best performance.

6.3 Performance
The application processed 5940 batches, each having 10,000 events.
The total time taken to process these 59 million events was around
111 seconds (≈2 minutes). The application produces results for 100
percent of the given batches for both query 1 and query 2. The aver-
age latency (50th percentile) for query 1was 94.896milliseconds and
the 90th percentile latency was 128.712 milliseconds. The average
latency for query 2 was 96.403 milliseconds and the 90th percentile
latency was 130.482 milliseconds. The throughput for both query 1
and query 2 was 53.107 batches per second. This amounts to the
Flink application processing about half a million events per second.
The performance of the application in terms of latency can be bet-
ter understood through the cumulative distribution function (CDF)
graph given below.
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Figure 5: CDF for Query 1 and Query 2

7 CONCLUSION
In this paper, we presented the design and implementation of an
Apache Flink-based application to solve the DEBS 2022 Grand Chal-
lenge: Detecting Trading Trends in Financial Tick Data. Our pri-
mary focus was to develop an end-to-end, functional system that
receives data from the gRPC source and correctly as well as effi-
ciently processes the required queries. The application is capable
of handling very high volumes of real-time data and provides ‘buy’
or ‘sell’ advice for financial instruments of interest to traders. We

have also developed a graphical user interface for the system which
allows traders to see the information in a human-readable format.
The graphs in the GUI help inmaking quick decisions for the trading
of financial instruments.

As we wanted the best performance metrics for our system, we
do not currently have very robust fault tolerance policies. Since
most of the fault tolerance techniques generally used today either
have high run-time overhead or a high recovery overhead, they are
not suitable for financial market applications such as ours. Further
work can be done in the direction of making the application more
robust in terms of fault tolerance and recovery by integration of
systems like LineageStash[7] and DS2[5].
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