
Efficient Processing of High-Volume Tick Data with Apache
Flink for the DEBS 2022 Grand Challenge
Stefanos Kalogerakis, Antonis Papaioannou and Kostas Magoutis

{skaloger,papaioan,magoutis}@ics.forth.gr
Institute of Computer Science (ICS), Foundation for Research and Technology - Hellas (FORTH)

Computer Science Department, University of Crete
Heraklion, Greece

ABSTRACT
The DEBS 2022 Grand Challenge (GC) focuses on real-time complex
event processing of real-world high-volume tick data. The goal of
the challenge is to efficiently compute specific trend indicators and
detect patterns resembling those used by real-life traders to decide
on buying or selling on the financial markets. Motivated by the
exciting nature of the 2022 GC topic, we undertook the design and
implementation of a system that addresses it. Our design features a
customwindowing mechanism that leverages event semantics. This
paper reports on our team’s solution to the 2022 GC and reports
on the performance we observed in the evaluation testbed.

CCS CONCEPTS
• Information systems→ Stream management.

KEYWORDS
data stream processing, high-volume processing of financial data

ACM Reference Format:
Stefanos Kalogerakis, Antonis Papaioannou and Kostas Magoutis. 2022.
Efficient Processing of High-Volume Tick Data with Apache Flink for the
DEBS 2022 Grand Challenge. In The 16th ACM International Conference on
Distributed and Event-based Systems (DEBS ’22), June 27–30, 2022, Copen-
hagen, Denmark.ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3524860.3539649

1 INTRODUCTION
The 2022 DEBS Grand Challenge (GC) [3] supported by Infront
Financial Technology1 focuses on real-time complex event process-
ing of high-volume tick data. In the real-world data set provided [2],
about 5000+ financial instruments are being traded on three major
exchanges over the course of a week. The goal of the challenge is
to efficiently compute specific trend indicators and detect patterns
that resemble those used by real-life traders to decide on buying or
selling on financial markets. The 2022 DEBS GC requires develop-
ers to implement a basic trading strategy aiming at (a) identifying

1https://www.infrontfinance.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DEBS ’22, June 27–30, 2022, Copenhagen, Denmark
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9308-9/22/06. . . $15.00
https://doi.org/10.1145/3524860.3539649

Fetch data

Report results

Ingest data

Publish results

Store fetched data

Get Q1/Q2 results

Apache
Flink

Ingestion-Reporting
Manager

Figure 1: Data analysis pipeline

trends in price movements for individual equities using event aggre-
gation over tumbling windows (Query 1) and (b) triggering buy/sell
advises using complex event processing upon detecting specific
patterns (Query 2). The first query implements the exponential
moving average (EMA) [4], an indicator per symbol used in techni-
cal analysis to identify trends. Q2 uses the quantitative indicators
of query 1, tracking two EMAs (with different smoothing factors)
per symbol computed over different intervals to identify breakout
(indication of market turning to bullish or bearish) patterns.

The evaluation dataset [2] is provided by the GC platform via
a gRPC-based API in a continuous stream of event batches, 𝐵𝑖 ,
𝑖 = 0, 1, 2, . . . Each batch 𝐵𝑖 includes a list of events, each event
comprising a symbol (identified by unique ID and exchange), type
(equity or index), last trade price, date of last trade, and time of last
update (bid/ask/trade). Each batch also specifies lookup symbols that
the evaluation platform subscribes to for this batch. The analytics
pipeline must report answers to Query 1 and 2 for the subscribed
symbols for each batch 𝐵𝑖 back to the GC platform. Performance
is evaluated based on average throughput and mean (for the two
queries) of the 90th-percentile latency for each batch. The reporting
mechanism is also based on the supported gRPC API.

We decided to use the Apache Flink [1] framework as our data
analysis platform to leverage the scalability and operational reliabil-
ity afforded by the base Flink platform, customizing the application
logic to solve the DEBS 2022 GC in an accurate manner and avoiding
loss of information. Apart from Flink, our complete software stack
includes a data ingestion and reporting service, fetching data from
the GC platform via the gRPC-based API [6], and Apache Kafka
[5] as a messaging and persistence service (Fig. 1) that decouples
ingestion from data analysis, simplifying their integration.

In designing our solution to the DEBS 2022 GC, we identified
the handling of late (out-of-order) events and the mapping between
batches of events and window-closings that contribute to them as
major correctness challenges. To address them we designed a cus-
tom window operator that leverages event semantics to correctly

https://doi.org/10.1145/3524860.3539649
https://doi.org/10.1145/3524860.3539649
https://www.infrontfinance.com/
https://doi.org/10.1145/3524860.3539649

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Kalogerakis, et al.

order events and to map event-batches to window-closings. While
tuning the performance of our solution, we identified the need to
rate-control the data ingestion process (which pulls event-batches
off of the GC platform) to ensure a suitable latency-throughput op-
erating point. Addressing this as well, we achieved a solid response
to the 2022 GC objectives. While our code parallelizes most oper-
ators (including the custom window logic), it maintains a single
instance of the batch-unpack logic (as parallelizing this introduces
further correctness considerations), eventually limiting the achiev-
able parallelism. We have developed an all-parallel version of our
code that allows partitioning the batch-unpack phase as well, but
did not manage to performance-tune it in time for submission to
the 2022 GC. We nevertheless describe its workings in this paper as
an additional design point, part of our ongoing and future work.

2 DESIGN AND IMPLEMENTATION
The proposed architecture of our data analysis pipeline comprises
three major components (Fig. 1): (1) the Data Ingestion-Reporting
Manager component, a tailor-made Java process that acts as an
interface to ingest data from and report query results to the evalu-
ation platform; (2) the Apache Kafka [5] component that is used
to decouple the data ingestion/reporting phase from data analysis,
and; (3) the stream analytics engine built on top of Flink. Here we
describe the design and implementation of each component.

2.1 Data Ingestion-Reporting Manager (DIRM)
The Data Ingestion-Reporting Manager (DIRM) component is a
Java process specifically designed to act as an interface with the
DEBS’22 GC evaluation platform. It can ingest data and report the
query results using the GC-supported gRPC-based API. It is also
responsible to report query results back to the GC platform. The
GC platform makes data available in batches, identified by an ID
assigned by the gRPC service.

The GC platform evaluates the latency of our solution by mon-
itoring the response time of each batch by the time we fetch it
through the gRPC API until we report query results for the batch
back to the platform. Having data go through an additional process,
the DIRM, can increase latency. However, we opt for this design,
as decoupling the data ingestion/reporting phase from the data
analysis improves portability and interoperability of the solution.
The ingestion/reporting component can be extended to fetch data
from different data sources (e.g. files) and/or reporting services
without affecting the implementation of the rest of the pipeline.

The ingestion and reporting tasks are implemented as separate
threads. The ingestion thread fetches and stores data on a Kafka
topic, while the reporting thread subscribes to the topics that the
analytics task publishes query results (more in Section 2.2).

The data ingestion rate from the GC platform should match the
results-reporting rate. Fetching data at a high rate leads to batch
queue-up within DIRM, waiting for subsequent analysis. While this
could improve throughput as the data analytics job will never be
idle waiting for data, an unnecessarily-high fetch rate may overly
penalize latency. To handle the latency vs. throughput trade-off,
we implemented a rate controller in the data ingestion task of this
component. The controller throttles the ingestion rate according to
the rate results are generated and reported.We empirically (through

repeated measurements and informed parameter settings) achieved
a balance between latency and throughput of data analysis in our
evaluation runs (more in Section 4.1).

The reporter can also be configured to report results for query
1 or query 2 or both (see Section 3). Finally, the DIRM component
keeps track of the total number of ingested batches and the reported
queries. When all queries have been reported back to the evaluation
platform, the reporting component signals benchmark completion
using the GC-supported gRPC API.

2.2 Use of Kafka for asynchronous messaging
Kafka [5] is used to simplify the integration of the ingestion and
data-analysis components. It maintains the ingested data before
the subsequent analysis, and the query results before the reporter
component reports them back to the GC-evaluation platform. The
use of Kafka allows us to leverage an existing Kafka connector that
is already well integrated with Flink (data ingestion, checkpointing)
rather than having to implement such a connector from scratch.

DIRM uses Kafka producers to publish data to a Kafka topic.
We opt for the synchronous Kafka producer API (instead of the
more performant asynchronous mode) to reduce the window of
uncertainty as to the status of published batches in case of DIRM
or Kafka crash. Finally, we built our own custom (de)serializers to
transfer data objects from and to Kafka topics in binary format.

2.3 Data Processing
The data analytics job comprises a stream-processing graph with
multiple operators depicted in Figure 2. These operators a) con-
sume the ingested data; b) unpack events included in batches; c)
implement custom window logic to determine the last observed
price per symbol in 5-minutes time-frames2, guaranteeing there
will not be dropped late events and window-closing will be correctly
associated with event batches; d) calculate the EMA; e) discover
crossover events; and e) gather and report the query results on all
lookup symbols per batch. Next we describe the design choices and
implementation details of each operator.

Source operator. This operator consumes data from Kafka by
subscribing to the corresponding topic. We use the Flink-supported
Kafka connector3 as our data source operator. We assume a single
instance of this (and the Unpack) operator, processing batches in
batch-ID order. We will discuss the impact of this choice in this
section and the implications of relaxing it in Section 5.

Unpack operator. Each batch fetched consists of a list of events
(trade actions for symbols) and a list of symbols of interest, lookup
symbols, that a user subscribes to (requests query results for that
symbols). The Unpack operator extracts and emits events from a
batch and also injects metadata on each output tuple (Listing 1).
The metadata include the (1) batch ID the event is extracted from;
(2) a flag per event symbol that marks if it is included in the lookup
list; (3) the number of lookup symbols in the batch; and (4) a flag
that indicates if the event is the last occurrence of the symbol in
the batch. The metadata are necessary for the subsequent analysis
on downstream operators.

2We use the term time-frame rather than window to refer to the different time interval-
s/ranges whose state may be simultaneously maintained by the window operator
3https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/kafka

Efficient Processing of High-Volume Tick Data with Apache Flink for the DEBS 2022 Grand Challenge DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

Kafka
Connector

Flat
Map

Custom
window

Partition on
Symbol-ID

Unpack

Process
Func

Map

EMA
calculator

Partition on

Batch-ID

Process
Func

Q1
reporter

Partition on
Symbol-ID Map

Crossover
detector

Process
Func
Q2

reporter

Partition on
Batch-ID

Partition on
Symbol-ID

Figure 2: Stream-processing job

case class EventUnpackSchema (
symbol: String,
securityType: SecurityType,
Price: Double,
timestamp: Long,
batchID: Long,
isSymbolsLastOccurence: Boolean,
lookupSymbolBool: Boolean,
lookupSize: Int,
isLastBatch: Boolean)

Listing 1: Emitted output of unpack operator

Window operator. Following the unpack operator is a window
operator that emits the last observed price per symbol in 5-minute
time-frames. Amajor challenge is to handle out-of-order late events,
i.e., events that arrive after a window has closed. These events are
typically dropped and as a results this could result in correctness
issues in the subsequent trend analysis. Flink’s built-in window
operators support allowedLateness option that can accept late events
for the specified amount of time when a window closes. However, it
is still challenging to predict an appropriate allowedLateness value;
in the general case, it is not possible to achieve a guarantee that
there will not be events that arrive later than the specified setting.

Our goal was to design an application that will not sacrifice
correctness over performance. We thus decided to build our own
custom window operator that closes a time-frame when, based on
event semantics, it determines that there are no events left out that
belong to the corresponding 5-minute time-frame. For each symbol
our window operator maintains a table of 5-minutes time-frames.
Upon the arrival of an event, the window operator has to decide
in which time-frame the event is to be assigned according to the
event time. Our mechanism performs event grouping and alignment
using Equation 1:

𝑓 (𝑒𝑣𝑒𝑛𝑡_𝑡𝑠) = ⌊(𝑒𝑣𝑒𝑛𝑡_𝑡𝑠/𝑤𝑖𝑛_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) ∗𝑤𝑖𝑛_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙⌋ (1)

The input to Equation 1 is the timestamp of each processed
event. The window interval is set to 5 minutes. The function re-
turns the starting time of the 5-minute time-frame that the event be-
longs to. For example, event timestamps 14:00:00.001, 14:00:02.421,
14:00:04.343 all belong to the time-frame starting at 14:00:00.000.

For every 5-minute time-frame, the operator maintains the last-
price seen for the symbol along with its timestamp. Our custom
operator applies incremental processing logic, i.e., it updates the
last-price seen of the symbol upon processing an incoming event by

comparing if the new event’s timestamp is later than the previous
stored last-price. Thus we maintain minimal state per time-frame,
avoiding buffering of all events within the same time-frame.

The operator also maintains a list of all batches seen and keeps
track of the progress of processing each batch, namely whether
the operator has processed all events of a batch according to the
metadata emitted by the upstream unpack operator. The operator
also identifies the 5-minutes time-frames affected by each batch.
Specifically, we link each batch with the last time-frame affected
by the batch. To do this we use the timestamp of the last occurence
of the symbol within the batch (the metadata flag isSymbolsLastOc-
curance in Listing 1). In Figure 3, the last timestamp of symbol ABC
in batch B5 is 12:28, affecting up to time-frame 12:25-12:30.

As events are aggregated from multiple sources we cannot as-
sume events for different symbols are timestamp-ordered. However,
we assume that events for the same symbol (always ingested from
a single source) have monotonically increasing timestamps across
batches, a fact that we have validated in the GC data set [2]. Thus,
for a given symbol the timestamp of its first event in batch B𝑖 is
later than the last timestamp of that symbol in batch B𝑖−1. Based on
these ordering properties, for a given symbol, the batch B𝑖 cannot
affect a time-frame preceding the time-frame linked to B𝑖−1. For
instance, in the example of Fig. 3 for symbol ABC, B4 cannot affect
a time-frame before the one linked to B3.

When a window operator fully processes a batch, i.e., all events
of the batch have been processed, the operator checks if there are
safe-to-close time-frames to emit the symbol’s last price observed
in such time-frames. A time-frame is considered as safe-to-close
when all batches linked to it and, at least the first batch linked to
the next time-frame, are completely processed. In the example of
Fig. 4, batches B3 and B4 are linked with time-frame 12:20-12:25.
However, the time-frame is not considered as safe-to-close after
the processing of these batches as we are not sure if the next batch
contains events that contribute to it. As soon as we have processed
the first batch of the next time-frame, i.e., batch B5, we are sure
that the subsequent batches cannot contain events for symbol ABC
affecting time-frames preceding the one that B5 is linked to.

Another challenge for our custom window operator is empty
batches, i.e., batches that do not contain events for a given symbol
(e.g., batch B1 in Fig. 3 does not contain events for ABC). As the
events of each symbol are timestamp-ordered and we use a single
instance of the source and unpack operator forwarding events to the
corresponding window operator instance, we derive the following

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Kalogerakis, et al.

State for each 5-min time-frames

Status for each batch

Custom window op for symbol ABC

1 2 3 4 5 6

12:05
12:10

12:10
12:15

12:15
12:20

12:20
12:25

12:25
12:30

Last ts in Batch5 is 12:28

Figure 3: Custom window-operator state for symbol ABC.
Each batch B𝑖 , 𝑖 = 1, 2, . . . points to the time-frame affected
by the last occurrence (last ts) of symbol ABC in that batch

property: a batch B𝑖 for which a window operator for symbol ABC
has seen no events from, while having seen events from B𝑖+1 or
later, means that B𝑖 is empty for ABC (e.g. B1 in Fig. 4).

When a batch is complete, the window operator identifies the
time-frame it is linked to and checks if there are pending time-
frames that can now be marked as safe-to-close. The example in
Fig. 4 illustrates the aforementioned scenario for symbol ABC: The
last occurrence of ABC in batch B2 has its timestamp within 12:05-
12:10 (the time-frame is still not considered as safe-to-close when B2
is fully processed). Batch B3 is linked to the time-frame 12:20-12:25
(i.e., is the last occurrence of events regarding ABC fall into this
time-frame). When B3 is fully processed we can mark time-frames
12:05-12:10, 12:10-12:15 and 12:15-12:20 as safe-to-close. This is
because all events for ABC in subsequent batches are expected to
have timestamp later than the last occurrence of ABC in B3.

The operator emits to its output the closing price of the symbol
for each safe-to-close time-frame and purges its state. If there are no
events for the symbol associated with a time-frame (e.g. time-frames
12:10-12:15, 12:15-12:20 for symbol ABC in Fig. 4), the operator
ignores the time-frame and purges its state. However, if the symbol
is in the lookup-symbols list, the operator emits a special-crafted
tuple to indicate to the downstream operators that there is no
closing price for the 5-minute time-window and thus, they should
report the previous EMA (see EMA calculator described next).

When B4 is completely processed, there are no new safe-to-
close time-frames. In this case the custom window operator emits a
specially-crafted output tuple for the lookup symbols that indicate
that the processing of the batch has completed. These specially-
crafted tuples indicate to the downstream operator (the EMA cal-
culator described below) that it can rely on the last computed EMA
corresponding the last closed time-window. In the example of Fig. 4
assuming ABC is a lookup symbol, when batch B4 closes, the time-
frame 12:20-12:25 is not safe-to-close, hence it emits a tuple signal-
ing batch completion. That specific time-frame will be marked as
safe-to-close only when B5 is fully processed.

EMA calculator. The last observed price for a 5-minute time-
frame emitted by the window operator is necessary for the EMA
calculation. There is a separate instance of the EMA calculator per

State for each 5-min time-frames

Status for each batch

Custom window op for symbol ABC

1 2 3 4 5 6

12:05
12:10

12:10
12:15

12:15
12:20

12:20
12:25

12:25
12:30

Last ts in Batch5 is 12:28

Figure 4: Window closing example: The checkmarks indi-
cate that batches B1-B5 have been fully processed and four
5-minute time-frames are safely considered fully closed

symbol. The EMA calculator operator computes the EMA according
to Equation 2.

𝐸𝑀𝐴
𝑗
𝑤𝑖

= [𝐶𝑙𝑜𝑠𝑒𝑤𝑖
∗ (2

1 + 𝑗
)] + 𝐸𝑀𝐴

𝑗
𝑤𝑖−1 ∗ [1 − (2

1 + 𝑗
)] (2)

𝑤𝑖 : the 5-minute time-frame
𝑗 : the smoothing factor for EMA with 𝑗 ∈ {38, 100}
𝐶𝑙𝑜𝑠𝑒𝑤𝑖

: the last price observed within time-frame w𝑖

The operator computes EMA for a given time-frame for two
different 𝑗 values specified by the user (see Table 1). When a tuple
indicates that a batch has completed but no new time-frames have
closed, we just fetch the latest EMA for this symbol and pass it to
the next operator. Otherwise, on entries indicating that new time-
frame(s) have closed, we calculate first the newest EMA(s) and emit
the newest results.

Q1 reporter. For the first query of the challenge we have to
report the EMAs for all the lookup symbols in a batch. The Q1 re-
porter operator gathers all computed EMAs for a batch and reports
the query result. The output of the EMA calculator is partitioned
on the batch ID. The metadata included on each event indicating
the total number of lookup symbols in a batch indicated when
the Q1 reporter has gathered all the requires EMAs for that batch.
When a lookup symbol emits multiple safe-to-close time-frames in
a batch and therefore multiple results, an indicator points to the
latest time-frame result for the reporter to expect.

Crossover calculator. The second query of the GC requires
to identify breakout patterns that indicate the start of a trend in
the development of a symbol’s price. This process is based on the
computed EMAs for a symbol over different intervals (i.e., EMA 𝑗

paramater). The Crossover calculator operator consumes the output
of the EMA calculator and discovers crossover events (breakout
patterns) as described in the GC. The operator maintains the three
most recent breakout events per symbol as required by query 2.
Upon detecting a new crossover event, the operator updates its
state and discards outdated state.

Q2 reporter. Similar to Q1 reporter, this operator gathers all
crossover events for all the lookup symbols in the batch before it

Efficient Processing of High-Volume Tick Data with Apache Flink for the DEBS 2022 Grand Challenge DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

Parameter Description Default
p Parallelism of Flink Application 1
i Parameter to Calculate EMA 38
j Parameter to Calculate EMA 100
c Checkpointing interval (mins) None
q Specify the required queries for

reporting. 1 for Q1, 2 for Q2
Both

Table 1: Configuration Options

reports the query 2 results. The input stream of the operator is
partitioned on the batch ID.

Both Q1 and Q2 reporters also act as sink operator, using a Kafka
producer to publish the results to the corresponding Kafka topic.

3 AUTOMATION SCRIPT
Our code repository4 ships with a configurable deployment and
execution management script. The script makes the installation
and deployment process of the dependent software components
easy. A simple command is enough to install the necessary library
dependencies and the software stack (Java runtime, Apache Flink
and Apache Kafka).

$> ./manage.sh install

The management script can also be used to build the submitted
software components (DIRM, Analytics application) from source
with the following command:

$> ./manage.sh build

Finally, the execution of the whole analytics pipeline can be
invoked using the management script:

$> ./manage.sh start

However, running the application also supports user defined
configuration settings (Table 1) including different smoothing fac-
tors for the EMA calculation (parameters i and j in Table 1) and
the reported queries (parameter q). Our analytics application also
supports scalable deployments (parameter p). We also support op-
eration reliability using the Flink checkpointing mechanism (using
the checkpointing interval option c).

4 EVALUATION
In this section we provide a summary of our experience with how
our code performs in the GC evaluation platform. The results of the
following section are averages over at least 4 runs with negligible
standard deviation.While there is a multitude of possible evaluation
dimensions, here we showcase key aspects affecting performance
of our implementation.

4.1 Effect of ingestion rate-control (throttling)
As analyzed in Section 2.1 (DIRM) we created a rate-control mech-
anism as a way to increase throughput via pre-fetching of batches
from the gRPC service, and to effectively balance the tradeoff be-
tween latency and throughput. Tuning this mechanism demanded
extensive evaluation of different parameters. Table 2 shows the im-
pact of different degrees of throttling (number of batches the DIRM
4https://github.com/skalogerakis/DEBS_2022_GrandChallenge

Throttle Latency (ms) Throughput (batches/sec)
5 287 27.1
10 328 38.3
15 484 38.8
20 602 39.0

Table 2: Varying degrees of throttle (1 slot, 5GB mem)

Mem (GB) Latency (ms) Throughput (batches/sec)
4 503 36.8
5 484 38.8
6 485 38.9

Table 3: Varying memory size (1 slot, throttle 15)

slots Latency (ms) Throughput (batches/sec)
1 484 38.8
2 404 47.3
3 401 46.2

Table 4: Varying parallelism (throttle 15, 5GB mem)

reads-ahead from the gRPC service) tested with 5GB of memory
and 1 slot (i.e., parallelism is set to 1 for all Flink operators). We
observe the tradeoff between latency and throughput in the results.
One may choose throttling settings based on specific goals (such as
rankings in this GC), and during our evaluation we chose 15 as this
seemed to provide the best outcome versus competition. Throttle
10 may have been another good choice as it leads to significantly
lower latency with a small impact on throughput. Based on our
experience during evaluation trials and a focus on throughput at
the time, we have narrowly opted for throttle 15 in our code and
use it to conduct the rest of our evaluation tests.

4.2 Effect of memory allocated to Flink
Choosing the most efficient memory to allocate in the Flink com-
ponent (TaskManager setting) is a challenge when building new
applications. Our choice of using 5GB memory in the experiments
of Section 4.1 was made based on early experience. The choice is
supported by the systematic evaluation shown in Table 3. Setting
Flink memory at 5GB achieves the best performance in both la-
tency and throughput compared to 4GB or 6GB (performance with
6GB is practically indistinguishable from that of 5GB). Note that
had cost-effectiveness rather than sheer performance been the key
criterion here, 4GB would have been a better choice as it leads to a
better performance per GB ratio in both latency and throughput.

4.3 Effect of parallelism on single
TaskManager

After experimenting with the throttling mechanism and different
memory configurations, we also tested different parallelism options
to obtain the best performance results possible. Our Flink setup
currently operates in standalone mode with multiple task slots
enabling parallelism of a Flink job within one machine.

For this set of experiments, we utilized the best configuration
from the throttling section (throttling 15) and the most effective
memory configuration (5GB of memory). Table 4 showcases results
for different slot options.

https://github.com/skalogerakis/DEBS_2022_GrandChallenge

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Kalogerakis, et al.

Our application performed best when we assigned two task slots
to it. Increasing the number of slots beyond that does not yield
any additional improvement. This is due to the fact that our source
operator is serial, so scaling the rest of the application even more
does not improve overall throughput/latency results. Parallelizing
the source operator in the way described in Section 5 is expected
to further increase performance benefits from parallelism.

5 ONGOING AND FUTUREWORK
After completing and fine-tuning our current solution, we inves-
tigated ways to improve even further our implementation while
preserving correctness guarantees. As noted in Section 2.3 our de-
signed solution relies on batches arriving in order, a condition made
possible by the centralized source operator. An apparent improve-
ment is to parallelize the source operator so as to spread its load
over multiple tasks, which should further improve scalability. The
differences between the presented solution and a fully parallel im-
plementation are concentrated on two operators, the unpack and
the custom window operator.

The main challenge with parallelizing the source operator is
that batches will be processed by different instances of the source
operator and thus events from them may now arrive downstream
out of order. Thus a window operator for symbol ABC may see all
events from batch B𝑖 before seeing any event from batch B𝑖−1, due
to the fact that batches 𝑖 and 𝑖 − 1 may be processed by different
partitions of the source operator and thus events from batch 𝑖 − 1
may be delayed. Our customwindow operator relies on the fact that
time-frames close only when all batches that may be contributing
to them have been processed, so delayed arrival of a batch means
that certain time-frame(s) will remain open waiting for it.

In our current (serial source operator) implementation, seeing all
events from batch B𝑖 before seeing any from B𝑖−1 means that there
are no instances of symbol ABC in batch B𝑖−1, thus no need to wait
for B𝑖−1. In a parallel implementation, this condition may also hold
because of a delay in batch B𝑖−1, which may follow a different path
(different source/unpack operator partition) compared to B𝑖 . We
thus need to determine whether we should wait for events from
batch B𝑖−1 or no such events exist and we should not expect to
account of them in time-frames maintained by the operator.

This can be decided by an efficient set-membership test such as
a Bloom Filter (BF) to let operators ask queries such as "is symbol
ABC a member of the set of symbols appearing in batch B𝑖?". As
background, BF5 is a probabilistic data structure used to evaluate
whether an element is member of a set. We implemented such a
solution in conjunction with an external Redis Database for main-
taining BF state.

Every instance of the Unpack operator creates a new bloom filter
upon processing a batch. The BF contains all the distinct symbols
in that batch and finally the BF is stored in Redis under the current
batch Id.Wewere also careful in the creation of BFs, to minimize the
probability of false positives that would lead to erroneous behavior.
Every instance of our custom window operator fetches the bloom
filter for the missing batches and checks whether it contains the
symbol processed by that instance of the window operator. If the BF
does not contain the symbol, the operator can safely mark the batch

5https://en.wikipedia.org/wiki/Bloom_filter

as complete as we don’t expect to arrive any event regarding that
specific symbol extracted from that batch. Otherwise, the window
operator marks the batch as pending and expects to process the
late events. In the case that a requested BF does not exist in Redis,
which means that it has not been created or stored yet, we handle
the batch like it is missing and will be checked again in the future,
i.e., when a next batch is fully processed by the operator.

Our current parallel implementation is code complete but could
not be thoroughly optimized for performance in time for submission
to the 2022 GC. This is a focus of our ongoing and future research
work.

Another focus of future work is to further improve the rate-
control mechanism (Sections 2.1 and 4.1) by implementing a rate
controller that can adapt its ingest rate for maximum throughput at
the lowest latency, as the data analytics pipeline scales up or down.

6 CONCLUSIONS
In this paper we report on our team’s (Group 14) response to the
DEBS 2022 Grand Challenge. We present the design and imple-
mentation of a data-analysis pipeline that addresses the GC by
leveraging event semantics to correctly handle the mapping be-
tween event-batches and window-closings as well as to handle late
(out of order) events. We report on the performance we observed
in the evaluation testbed along with the impact of key parameters
(degree of throttling at the source, memory and task slots allocated
to a task manager). Beyond performance, our solution concretely
addresses configurability and operational resilience through easy-
to-use management scripts and the robustness afforded by the
mature data-analysis platforms underlying our solution. We also
outline the design and implementation of a fully-parallel version of
our data-analysis pipeline, subject of an ongoing evaluation, hoping
to soon be able to demonstrate its additional scalability benefits.

ACKNOWLEDGMENTS
We thankfully acknowledge funding by the Hellenic Foundation
for Research and Innovation through the STREAMSTORE faculty
grant (Grant ID HFRI-FM17-1998) that made this research possi-
ble. We would also like to thank the DEBS 2022 Grand Challenge
organizers [3] for proposing this exciting challenge and for their
support through our implementation and evaluation effort.

REFERENCES
[1] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. 2015.

Apache Flink™: Stream and Batch Processing in a Single Engine. IEEE Data Eng.
Bull. 38, 4 (2015), 28–38.

[2] S. Frischbier, J. Tahir, C. Doblander, A. Hormann, R. Mayer, and H.-A. Jacobsen.
2022. DEBS 2022 Grand Challenge Data Set: Trading Data. https://doi.org/10.
5281/zenodo.6382482.

[3] S. Frischbier, J. Tahir, C. Doblander, A. Hormann, R. Mayer, and H.-A. Jacobsen.
2022. The DEBS 2022 Grand Challenge: Detecting Trading Trends in Financial
Tick Data. In Proc. of the 16th ACM Int. Conference on Distributed and Event-Based
Systems (Copenhagen, Denmark) (DEBS ’22). 6 pages.

[4] P. J. Kaufman. 2013. Trading Systems and Methods (5th ed.). Wiley Publishing.
[5] Jay Kreps, Neha Narkhede, and Jun Rao. [n.d.]. Kafka: a Distributed Messaging

System for Log Processing. In Proc. of 6th International Workshop on Networking
Meets Databases (NetDB 2011) (Athens, Greece, June 12, 2011).

[6] J. Tahir, C. Doblander, R. Mayer, S. Frischbier, and H.-A. Jacobsen. 2021. The
DEBS 2021 Grand Challenge: Analyzing Environmental Impact of Worldwide
Lockdowns. In Proc. of the 15th ACM Int. Conf. on Distributed and Event-Based
Systems (DEBS ’21). https://doi.org/10.1145/3465480.3467836

https://en.wikipedia.org/wiki/Bloom_filter
https://doi.org/10.5281/zenodo.6382482
https://doi.org/10.5281/zenodo.6382482
https://doi.org/10.1145/3465480.3467836

	Abstract
	1 Introduction
	2 Design and implementation
	2.1 Data Ingestion-Reporting Manager (DIRM)
	2.2 Use of Kafka for asynchronous messaging
	2.3 Data Processing

	3 Automation Script
	4 evaluation
	4.1 Effect of ingestion rate-control (throttling)
	4.2 Effect of memory allocated to Flink
	4.3 Effect of parallelism on single TaskManager

	5 Ongoing and Future Work
	6 conclusions
	Acknowledgments
	References

