
Optimizing Complex Event Forecasting
Vasileios Stavropoulos1, Elias Alevizos1, Nikos Giatrakos2,3, Alexander Artikis4,1

1Institute of Informatics & Telecommunications, NCSR Demokritos, Greece
2School of Electrical & Computer Engineering, Technical University of Crete, Greece

3Institute for the Management of Information Systems, Athena Research Center, Greece
4Department of Maritime Studies, University of Piraeus, Greece

{v.stavropoulos,alevizos.elias}@iit.demokritos.gr
ngiatrakos@softnet.tuc.gr

a.artikis@unipi.gr

ABSTRACT
In Complex Event Recognition (CER), applications express business
rules in the form of patterns and deploy them in a CER Engine
which seeks the occurrence of such patterns on incoming streams.
This is useful for practical applications which rely on the timely
detection of patterns to support critical decisions. One step further,
stakeholders want to act proactively, accurately forecasting the
occurrence of patterns on raw streams well ahead of time to better
schedule their decisions. This calls for making the transition from
CER to Complex Event Forecasting (CEF). In CEF, stochastic models
of future behavior are embedded into the event processing loop to
project into the future the sequence of events that have occurred
so far and to estimate the likelihood of the imminent occurrence of
more complex patterns. CEF performance engages the stochastic
model’s training speed and forecast accuracy. In turn, these per-
formance dimensions are affected by few parameters. However,
CEF parameter tuning so that optimal CEF performance is achieved
is a non-trivial task. This is due to the fact that there is an infi-
nite number of possible parameter combinations, each affecting
CEF performance in ways which are hard to predict. In this work,
we introduce the first CEF Optimizer that gracefully automates
CEF parameter tuning decisions, rapidly cherry picking good CEF
configurations. We detail the novel internal architecture of our
CEF Optimizer and present an elaborate empirical analysis on two
applications that illustrates the effectiveness of our optimization
approach.

CCS CONCEPTS
• Information systems→ Data management systems; • The-
ory of computation → Formal languages and automata theory; •
Mathematics of computing → Bayesian computation.

KEYWORDS
Complex Event Processing , Complex Event Recognition, Complex
Event Forecasting, Bayesian Optimization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DEBS ’22, June 27–30, 2022, Copenhagen, Denmark
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9308-9/22/06. . . $15.00
https://doi.org/10.1145/3524860.3539810

ACM Reference Format:
Vasileios Stavropoulos1, Elias Alevizos1, Nikos Giatrakos2,3, Alexander
Artikis4,1. 2022. Optimizing Complex Event Forecasting. In The 16th ACM
International Conference on Distributed and Event-based Systems (DEBS ’22),
June 27–30, 2022, Copenhagen, Denmark.ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3524860.3539810

1 INTRODUCTION
In Complex Event Recognition (CER) expert users from an applica-
tion field express business rules in the form of patterns and deploy
them in a CER Engine [6, 17, 25, 27, 28]. The CER Engine is then
responsible for detecting the occurrence of such patterns on tuples
that stream into it, in an online fashion. This is useful for a variety
of practical applications which rely on the timely detection of pat-
terns to provide alarms, trigger subsequent business procedures or
support critical decisions.

Consider, for instance, a traffic monitoring scenario on land or at
sea. Moving objects continuously transmit their location to a central
server. The CER Engine running at the server side is responsible
for receiving simple events of position updates and combining
them in order to detect higher level patterns, i.e. Complex Events
(CEs), representing some business rules of interest [56, 57]. As an
example, assume that the application wants to detect a CEwhenever
the number of times that objects move closer than 𝐷-distance to
each other within an area, i.e., proximity events occur [54], exceeds
a threshold 𝑇 . The CER Engine will process simple position update
events, detect first level CEs in case 𝐷-distance checks are true and
finally output the required higher level CE when the count of first
level CEs within an area exceeds 𝑇 , red-flagging that area.

This flag is an alarm that triggers subsequent business proce-
dures. On land, flags may highlight areas of a road network where
drivers exhibit aggressive behavior. Therefore, subsequent busi-
ness procedures would involve the placement and periodic re-
arrangement of traffic wardens or patrol cars. At sea, the CE may
flag areas where smuggling, i.e., illegal trade of goods, is taking
place and authorities can move on site to investigate the situation
first hand.

Nonetheless, CER only allows for reactive measures after a pat-
tern occurrence. In our example scenarios, the authorities can de-
cide only after the respective CEs have occurred, which incurs a
lag between the detection of the pattern and the exploitation of the
respective CE detection in the field. Such a lag may impact the effect
and validity of related decisions [55]. Stakeholders would prefer
to act proactively, accurately forecasting the areas of smuggling

https://doi.org/10.1145/3524860.3539810
https://doi.org/10.1145/3524860.3539810

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Vasileios Stavropoulos1 , Elias Alevizos1 , Nikos Giatrakos2,3 , Alexander Artikis4,1

or aggressive driving behavior well ahead of time so that authori-
ties have the time to analyze possible what-if scenarios and better
schedule their reactions.

This requirement calls for making the transition from CER to
CEF (Complex Event Forecasting). In CEF, a CE can be fully matched
against the streaming data, in which case events are detected (as
in CER), or partially matched, in which case CEs are forecast with
various degrees of certainty [5]. The latter stems from stochastic
models of future behavior, embedded into the event processing
loop, which project into the future the sequence of events causing
a partial event pattern match, to estimate the likelihood of a full
match, i.e. the actual occurrence of a particular CE.

Wayeb [3–5] is one of the first CEF Engines that supports proac-
tive event analytics. Wayeb is conceptually divided into two layers
that operate in tandem. The training layer receives as input a set
of patterns of interest and a training dataset of input events and
uses them in order to build stochastic models predicting future
events given occurred ones. Then, these models are deployed in
the forecasting layer to actually forecast future events of interest.

When a CEF Engine operates in production, it forecasts events to
occur within a certain, future time-horizon. Then, as time passes, it
should check whether the forecast events did occur or not and use
this information as feedback in a continuous training process which
keeps updating the forecasting stochastic models. The behavior of
the training and forecasting layers and of the engine is tuned by a
handful of parameters: (1) order, i.e., how many events stochastic
models should remember to base their forecasts on, (2) the desired
confidence threshold to output a forecast, (3) a minimum event
probability threshold so that events with lower probability are
discarded and (4) a distribution smoothing parameter.

CEF performance is characterized by the training speed and
the forecast accuracy for the training and the forecasting layer,
respectively. Longer training periods are expected to improve the
accuracy of CEF, but delay the deployment of continuously up-
dated, accurate models in the forecasting layer [5]. To optimize
CEF applications, an appropriate balance should be achieved so
that good-enough trained models are deployed as soon as possible.
This is a non-trivial, bi-objective optimization problem, because
the number of possible parameter combinations is infinite and each
combination affects performance in a non-monotonic way.

Not only the problem of optimizing CEF applications is non-
trivial, but also none of the optimization approaches used for CER [1,
9, 19, 36, 41, 42, 47, 50, 53] can be adapted in the CEF context be-
cause they do not account for CEF parameter tuning, training time
and optimization accuracy. Previous works on CEF [3–5] have not
examined CEF parameter turing to automatically optimize perfor-
mance. If we allow the end users or the applications to manually
configure the CEF Engine, their decisions can be severely subopti-
mal, or they will not be able to decide at all, given the complexity
of the problem at hand. To tackle this challenge, we introduce the
first CEF Optimizer that gracefully automates CEF parameter tun-
ing decisions. The basic concept of the proposed CEF Optimizer
is to focus on learning the behavior of an objective function that
incorporates the involved performance criteria. We model the per-
formance of a CEF Engine using sample executions and Bayesian
Optimization-based estimators. We, thus, remove from field experts
and business analysts the burden of properly configuring a CEF

Engine and we enable them to concentrate on correctly express-
ing business needs in the form of patterns. We present the novel
internal architecture of our CEF Optimizer and an elaborate em-
pirical analysis on two real-world applications that illustrates the
ability of our optimization approach to cherry pick proper CEF
configurations.

2 BACKGROUND
In this section, we present a brief overview of the framework and
the engine we use, along with the basic parameters which need to
be fine-tuned for the engine to work optimally. As our engine of
choice, we have opted forWayeb.Wayeb is an open-source Complex
Event Recognition and Forecasting engine [3–5]1. It is based on
automata for recognition and on Markov models for forecasting.
User-provided patterns are compiled into symbolic automata and
these automata are subsequently given a probabilistic description
by using variable-order Markov models. We also briefly present the
basic concepts behind Bayesian optimization.

2.1 Complex Event Recognition
Wayeb functions by accepting as input a set of pattern definitions
for the complex events that a user is interested in. The definition
for each complex event must be expressed in the form of a symbolic
regular expression. Symbolic regular expressions are similar to
classical regular expressions, the main difference being that their
terminal “symbols” are not actually symbols from a finite alphabet,
but logical predicates. Thus, symbolic regular expressions, instead
of checking whether a new character is equal to a terminal symbol,
check whether a new “character” (in our case, characters are tuples)
satisfies a given terminal predicate.

Wayeb uses the standard operators of classical regular expres-
sions: concatenation, disjunction and Kleene-star. It can also ac-
commodate negation and operators for different selection policies
(see [25] for a discussion of selection policies). Symbolic regular
expressions are defined as follows:

Definition 2.1 (Symbolic regular expression). A Wayeb symbolic
regular expression (SRE) is recursively defined as follows:
• If𝜓 is a predicate, then 𝑅 := 𝜓 is a symbolic regular expression,
with L(𝜓) = ⟦𝜓⟧, i.e., the language of 𝜓 is the subset of all
possible tuples for which𝜓 evaluates to TRUE;

• Disjunction / Union: If 𝑅1 and 𝑅2 are symbolic regular expres-
sions, then 𝑅 := 𝑅1 + 𝑅2 is also a symbolic regular expression,
with L(𝑅) = L(𝑅1) ∪ L(𝑅2);

• Concatenation / Sequence: If 𝑅1 and 𝑅2 are symbolic regular
expressions, then𝑅 := 𝑅1 ·𝑅2 is also a symbolic regular expression,
withL(𝑅) = L(𝑅1)·L(𝑅2), where · denotes concatenation.L(𝑅)
is then the set of all strings constructed from concatenating each
element of L(𝑅1) with each element of L(𝑅2);

• Iteration / Kleene-star: If 𝑅 is a symbolic regular expression, then
𝑅′ := 𝑅∗ is a symbolic regular expression, withL(𝑅∗) = (L(𝑅))∗,
where L∗ =

⋃
𝑖≥0

L𝑖 and L𝑖 is the concatenation of L with itself

𝑖 times.

1Wayeb source code: https://github.com/ElAlev/Wayeb.

https://github.com/ElAlev/Wayeb

Optimizing Complex Event Forecasting DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

0start 1 2
speed > 5

>
speed > 5

Figure 1: Streaming symbolic automaton created from the
expression 𝑅 := (𝑠𝑝𝑒𝑒𝑑 > 5) · (𝑠𝑝𝑒𝑒𝑑 > 5). ⊤ is a predicate
which always (for every event) evaluates to TRUE. Thus, the
loop on the initial state allows the automaton to skip any
number of events and start recognition at any point in the
stream.

• Negation / complement: If 𝑅 is a symbolic regular expression,
then 𝑅′ := !𝑅 is a symbolic regular expression, with L(𝑅′) =

(L(𝑅))𝑐 .
• skip-till-any-match selection policy: If 𝑅1, 𝑅2, · · · , 𝑅𝑛 are sym-
bolic regular expressions, then 𝑅′ := #(𝑅1, 𝑅2, · · · , 𝑅𝑛) is a sym-
bolic regular expression, with 𝑅′ := 𝑅1 · ⊤∗ · 𝑅2 · ⊤∗ · · · ⊤∗ · 𝑅𝑛 ,
where 𝑇 is a predicate that always evaluates to TRUE, regardless
of the tuple on which it is applied.

• skip-till-next-match selection policy: If 𝑅1, 𝑅2, · · · , 𝑅𝑛 are sym-
bolic regular expressions, then 𝑅′ := @(𝑅1, 𝑅2, · · · , 𝑅𝑛) is a sym-
bolic regular expression, with 𝑅′ := 𝑅1·!(⊤∗ ·𝑅2 ·⊤∗) ·𝑅2 · · ·!(⊤∗ ·
𝑅𝑛 · ⊤∗) · 𝑅𝑛 .

AWayeb expression without a selection policy implicitly follows
the strict-contiguity policy, i.e., the input events involved in amatch
of a pattern should occur contiguously in the input stream. All the
above operators, even those of selection policies, may be arbitrarily
used and nested in an expression, without any limitations. This is
an attractive feature of Wayeb and in contrast to other automata-
based Complex Event Recognition engines which have ambiguous
semantics and rules for operator usage [25].

Wayeb patterns are compiled into symbolic automata, i.e., au-
tomata whose transitions are equipped with predicates instead
of symbols [18]. Every symbolic regular expression can be trans-
lated to an equivalent (i.e., with the same language) symbolic
automaton [18]. As an example, consider the following pattern:
𝑅 := (𝑠𝑝𝑒𝑒𝑑 > 5) · (𝑠𝑝𝑒𝑒𝑑 > 5). This simple pattern detects two
consecutive events where the speed of a moving object exceeds
a given threshold and could thus be used to detect speed viola-
tions (e.g., in France it is forbidden to sail with speed higher than 5
knots within 300m of the coastline). Figure 1 shows the equivalent
symbolic automaton produced from this pattern.

2.2 Complex Event Forecasting
Using the automaton of Figure 1, it is possible to detect instances of
speed violations. In addition to detecting pattern matches, analysts
may also be interested in forecasting them. For example, an analyst
may be interested in knowing whether a given moving object will
violate the speed limits within the next 5 minutes. The goal of a
Complex Event Forecasting engine in this case would be to evaluate
whether the automaton of Figure 1 (whichmoves among its states as
it consumes input events) is expected, with high enough confidence,
to reach its final state (and thus produce a match) within the next 5
minutes.

ε,(0.6,0.4)

a,(0.7,0.3)

aa,(0.75,0.25) ba,(0.1,0.9)

b,(0.5,0.5)

Figure 2: Example of a Prediction Suffix Tree 𝑇 for Σ = {𝑎, 𝑏}
and𝑚 = 2. Each node contains the label and the next symbol
probability distribution for 𝑎 and 𝑏.

Symbolic automata are sufficient to perform Complex Event
Recognition. In order to perform Complex Event Forecasting, how-
ever, these automata must be given a probabilistic description. This
is achieved by using variable-order Markov models (VMM). With
VMMs it becomes possible to increase their order𝑚 (how many
events they can remember) to higher values compared to fixed-
order Markov models. It is thus possible to capture longer-term
dependencies, which can lead to a better accuracy. Specifically, Pre-
diction Suffix Trees [45, 46] are employed. Prediction Suffix Trees
have been proposed in order to succinctly capture the statistical
properties of sequences of symbols. Each node contains a “context”
and a distribution. The distribution lets us know the probability of
encountering a symbol, conditioned on the context. Figure 2 shows
an example of a Prediction Suffix Tree. Note that, in our case, each
“symbol” of a Prediction Suffix Tree corresponds to a predicate of
the automaton for which we want to build a probabilistic model.
For example, 𝑎 in Figure 2 may correspond to (𝑠𝑝𝑒𝑒𝑑 > 5) of Figure
1 and 𝑏 to ¬(𝑠𝑝𝑒𝑒𝑑 > 5) (negated literals are usually also included
in the tree nodes, see [5] for details). Given a Prediction Suffix
Tree, we can then infer how a symbolic automaton might behave
in the future and when it might reach its final state and thus detect
a complex event. For example, if we know that a moving object
has exceeded the threshold of 5 for two consecutive events, then,
according to Figure 2, the probability of this happening again is
0.75. If, additionally, we are in state 1 of Figure 1, then we know
that we will detect a new complex event at the next input event
with probability 0.75.

The goal is to learn a tree from a training dataset and then use it
to perform online forecasting. A Prediction Suffix Tree is learned
incrementally by adding new nodes only when it is necessary. The
learning algorithm [46] starts with a tree having only a single node,
corresponding to the empty string 𝜖 . Then, it decides whether to
add a new context/node 𝑠 by checking two conditions [46]:
• First, there must exist a symbol (predicate, in our case) 𝜎 such
that 𝑃 (𝜎 | 𝑠) > 𝜃1 must hold, i.e., 𝜎 must appear “often enough”
after the suffix 𝑠;

• Second, 𝑃 (𝜎 |𝑠)
𝑃 (𝜎 |suffix (𝑠)) > 𝜃2 (or 𝑃 (𝜎 |𝑠)

𝑃 (𝜎 |suffix (𝑠)) < 1
𝜃2
) must hold,

i.e., it is “meaningful enough” to expand to 𝑠 because there is a
significant difference in the conditional probability of 𝜎 given 𝑠
with respect to the same probability given the shorter context
suffix (𝑠), where suffix (𝑠) is the longest suffix of 𝑠 that is different
from 𝑠 .

Threshold 𝜃1 depends on parameters 𝛼 and 𝛾 , 𝛼 being an approx-
imation parameter and 𝛾 a smoothing parameter. The algorithm
also discards symbols that are too rare (whose probability 𝑃 (𝜎) falls
below a threshold 𝑝𝑀𝑖𝑛).

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Vasileios Stavropoulos1 , Elias Alevizos1 , Nikos Giatrakos2,3 , Alexander Artikis4,1

0start 1 2 3 4
a b b b

a

a

a

b

b a

(a) Deterministic automaton.

1 2 3 4 5 6 7 8 9 10 11 12

Number of future events

0

0.2

0.4

0.6

0.8

1

C
o

m
p

le
ti
o

n
 P

ro
b

a
b

ili
ty

state:0
state:1
interval:3,8
state:2
state:3

(b) Waiting-time distributions and shortest interval, i.e.
[3, 8], exceeding a confidence threshold𝜃 𝑓 𝑐 = 50% for state
1.

Figure 3: Automaton and waiting-time distributions for 𝑅 =

𝑎 · 𝑏 · 𝑏 · 𝑏, Σ = {𝑎, 𝑏}.

A Prediction Suffix Tree 𝑇 can be used to calculate the so-called
waiting-time distribution for every state 𝑞 of an automaton 𝐴. The
waiting-time distribution is the distribution of the index 𝑛, given by
the waiting-time variable𝑊𝑞 = 𝑖𝑛𝑓 {𝑛 : 𝑌0, 𝑌1, ..., 𝑌𝑛}, where 𝑌0 = 𝑞,
𝑌𝑖 ∈ 𝐴.𝑄\𝐴.𝑄 𝑓 for 𝑖 ≠ 𝑛 and 𝑌𝑛 ∈ 𝐴.𝑄 𝑓 . Such a distribution lets us
know the probability of reaching a final state in 𝑛 transitions from
any other given state. It thus allows us to estimate the probability
of detecting a complex event in 𝑛 transitions, since reaching a final
state is equivalent to recognizing such an event. Figure 3 shows
an example of an automaton and the waiting-time distributions
learned from a training dataset. If the automaton is in state 2, then
the probability of reaching the final state 4 for the first time in 2
transitions is ≈ 50%.

The waiting-time distributions can then be used to produce
various kinds of forecasts. In this paper, we are interested in a
type of forecasting called CLASSIFICATION-NEXTW. As the name
suggests, the goal is to be able to answer queries of the following
form: given that an automaton is in a given state, will it reach a final
state within the next w transitions (or, equivalently, input events)?
Such queries can be answered simply by summing the probabilities
of the first w points of a distribution and if this sum exceeds a given
confidence threshold 𝜃fc a “positive” forecast is emitted (meaning
that a CE is indeed expected to occur); otherwise a “negative” (no CE
is expected) forecast is emitted. It is important to note that positive
and negative forecasts are constructed only once, as a result of
the training process. When running the CEF system against a new,
unknown (test) stream, the forecasts are stored in a look-up table
(one for each automaton state). Whenever the automaton reaches a

state, a forecast is simply retrieved from the table, without requiring
any elaborate computations. The throughput of the system is thus
not affected by the model complexity. On the contrary, training
time can be significantly affected by the choice of the values for
the parameters.

From the above discussion, it is easy to see that there are multiple
hyper-parameters which need to be optimized so that a balance
between forecasting accuracy and training time is achieved. For
example, increasing the maximum order m of the Markov model
generally leads to higher accuracy. On the other hand, this leads
to deeper prediction suffix trees and more complex probabilistic
models, which also increases the training time required to construct
such models. The confidence threshold 𝜃fc is another crucial pa-
rameter. If 𝜃fc is very low, then the constructed model will generate
many positives and thus many false positives. With high values of
𝜃fc , the result will be a large number of false negatives.We thus need
to find the sweet spot for 𝜃fc that achieves the best accuracy results.
It should be noted that this parameter does not have a significant
effect on training time, since the computations involved are ex-
actly the same, regardless of the specific value of 𝜃fc . The threshold
pMin can affect both accuracy and training time. High pMin values
mean that many “symbols” are discarded, which can lead to simpler
models and decreased training times. However, excessively high
pMin values can degrade the accuracy of our forecasts. A similar
behavior can be observed with the 𝛾 parameter. These observations
make it clear that the relationship between the values of the various
hyper-parameters and the performance of the constructed model
in terms of accuracy and training time is far from being linear. As
a consequence, manual parameter optimization becomes very hard.
In this paper, we employ Bayesian optimization in order to search
the parameter space for the best possible hyper-parameter values.

2.3 Bayesian Optimization
A variety of scientific and industrial applications require the identifi-
cation of the optimal value (maximum or minimum) of an objective
function. Such optimization problems often aim at the identification
of the optimal value of a black-box objective function, i.e. a function
with unknown mathematical and statistical properties. Moreover,
the objective function is commonly expensive to evaluate, thus
limiting the number of the evaluations we are allowed to obtain.
Bayesian Optimization (BO) has been used widely in the optimiza-
tion of such expensive functions, as it aims at the approximation of
the objective function 𝑓 over the feasible set 𝑋 by evaluating the
function only on a limited number of sampled points.

BO optimizes an objective function 𝑓 by iteratively evaluating
the value of 𝑓 in sampled points and constructing an estimate for
the mean value of 𝑓 over the set of all feasible points [11]. BO is
composed of two parts: a) a statistical model used to estimate the
objective function; b) an acquisition function used to efficiently sam-
ple the next points to be evaluated. A Gaussian Process Regression
(GPR) approach is often followed to model the objective function.
The Gaussian Process (GP) model used in the GPR approach serves
as the statistical model of the optimization and provides a probabil-
ity distribution that estimates the value of the objective function
over the set of feasible points 𝑋 [43, 51]. The model consists of
a probability distribution over possible functions that fit the set

Optimizing Complex Event Forecasting DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

Algorithm 1 Bayesian Optimization
Place a Gaussian Process prior on 𝑓 .
Evaluate 𝑓 at 𝑛𝑜 initial points. Set 𝑛 = 𝑛0. Update distribution
based on initial evaluations.
while 𝑛 ≤ 𝑁 do

Find 𝑥𝑛 that maximizes the acquisition function over 𝑋 .
Observe 𝑦𝑛 = 𝑓 (𝑥𝑛).
Update posterior distribution of 𝑓 using all observed 𝑓 values.
Increment 𝑛

end while
Return the point 𝑥 with the largest evaluated 𝑓 (𝑥) or the point
with the highest posterior mean.

of evaluated points. This distribution is updated with each new
evaluation of the objective function. In particular, a GP is defined
by a mean function𝑚 and a covariance function or kernel 𝑘 :

𝑓 (𝑥) ∼ 𝑁 (𝑚(𝑥), 𝑘 (𝑥, 𝑥 ′))

The kernel of the GP describes the smoothness of the distribution
and defines the covariance between the values of the objective
function between different points , i.e., how similar the evaluations
of the objective function on close points are. In particular, the kernel
function determines the functions that are most likely under the GP
prior distribution and, thus, incorporate prior beliefs we have about
the objective function. The most widely used kernel functions [23]
are the Radial Basis Function (RBF) kernel, i.e.

𝑘 (𝑥, 𝑥 ′) = 𝑒𝑥𝑝 (− ||𝑥 − 𝑥 ′ | |2
2𝑙2

) (1)

and the Matérn kernel, i.e.

𝑘 (𝑥, 𝑥 ′) = 1
Γ(𝑣)2𝑣−1

(√
2𝑣
𝑙

| |𝑥 − 𝑥 ′ | |
)𝑣
𝐾𝑣

(√
2𝑣
𝑙

| |𝑥 − 𝑥 ′ | |
)

(2)

where 𝑙 is the characteristic length scale of the kernel, 𝐾𝑣 a mod-
ified Bessel function and Γ is the gamma function. The parameter 𝑣
of the Matérn kernel controls the smoothness of the function. Small
values of 𝑣 identify a less smooth approximated function, while
large values signal the opposite. Moreover, the kernel becomes
equivalent to the RBF kernel as 𝑣 → ∞. The RBF kernel is used
widely as it is infinitely differentiable and can, thus, approximate
very smooth functions. The most common variations of the Matérn
kernel are for 𝑣 = 3/2 and 𝑣 = 5/2, which represent once and twice
differentiable functions, respectively [43].

The acquisition function allows us to select the next evaluation
point in an informative manner, as it serves as a utility estimate for
all feasible points. In particular, the acquisition function quantifies
the contribution of the evaluation of the objective function to our
estimation for each point. Commonly used acquisition functions
are the Expected Improvement (EI), Probability of Improvement
(PI), Lower Confidence Bound (LCB), Upper Confidence Bound
(UCB) and Entropy Search (ES) [11]. Different acquisition functions
estimate the importance of the evaluation of the objective function
at candidate points under a different scope, balancing between the
trade-off of exploration and exploitation. The acquisition functions
whose primary aim is the exploration of the parameter space select

points for which the estimate of the objective function is of higher
uncertainty, while those that aim at the exploitation of the space
sample points in which the expected mean value of the objective
function is high. Hence, when exploring the parameter space, our
goal is to evaluate points with high variance in uncertain regions.
On the contrary, the goal of exploitation is to select points in which
we are confident the objective function is high and, thus, aim at
increasing the so far optimal value of the objective function.

A pseudo-code of the algorithm of BO is shown in Algorithm 1.
Initially, the objective function is evaluated at 𝑛0 randomly sampled
points of the feasible set. The evaluations are used in order to obtain
an initial distribution of 𝑓 . Subsequently, the acquisition function
is used in order to sample the next point to evaluate. In particu-
lar, the point that maximizes the acquisition function is set as the
next point to evaluate. The statistical properties of the acquisition
function are known and its evaluation is inexpensive. Hence, we
can efficiently find the point that yields the maximum value of the
acquisition function. After selecting the next point, the objective
function is evaluated at the sampled point and the posterior distri-
bution is updated based on all observed values of 𝑓 . At this stage,
the posterior distribution incorporates an updated understanding
of the unknown objective function. During the process, the kernel
of the GP allows us to estimate the value of the objective function
at points that have not been evaluated yet, as it identifies all the
functions under the distribution. The aforementioned process (sam-
pling of next point→ evaluation of objective function→ update
of posterior distribution) is repeated until we reach the declared
number of total evaluated points 𝑁 .

3 PROBLEM STATEMENT
We develop a CEF Optimizer with the aim of identifying the optimal
configuration of Wayeb’s hyperparameters for a given pattern. A
candidate configuration c is defined by four parameters, as follows:

c = [m, 𝜃fc, pMin, 𝛾]

where m is the maximum order of the Prediction Suffix Tree, 𝜃 𝑓 𝑐 is
the desired confidence threshold of the forecast, pMin is the symbol
probability threshold (symbols with lower probability than pMin
are discarded) and 𝛾 is the distribution smoothing parameter (we
have excluded 𝛼 from our investigation since we have observed
that its impact is typically negligible for a wide range of values).
Moreover, the allowed range of each variable is set as:

m ∈ [1, 5] 𝜃fc ∈ [0.0, 1.0]
pMin ∈ [0.0001, 0.01] 𝛾 ∈ [0.0001, 0.01]

Due to the parameter range, the feasible configurations are infinite.
Moreover, it is hard to predict how a combination of parameters
will affect the performance of the CEF Engine. Thus, it is important
to automate the search for the optimal configuration of the engine
based on the evaluation of a limited number of well performing
ones. To do so, we must define a metric that provides an estimate
regarding the performance of each configuration.

In order to estimate the performance of each configuration we
define a scoring function which takes into consideration various
metrics indicative of the performance of the framework. We define

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Vasileios Stavropoulos1 , Elias Alevizos1 , Nikos Giatrakos2,3 , Alexander Artikis4,1

Training
Time
(tt),

Accuracy
(MCC)

Statistics
Collector

m,
pMin,
γ

Benchmarker
• Prescribed next c=[m,θfc,pMin,γ]

micro-benchmark
• Current optimal copt[m, θfc, pMin, γ]

if ¬convergence()
run micro-benchmark

else deploy copt[m, θfc, pMin, γ]

Training
Data

Validation
Data

Wayeb CEF Engine

Learning a
prediction
suffix tree

Estimation of
waiting-time
distributions
for each state

Construction
of
forecasts

BO (GPR) Model

Acquisition Function

BO Cost Modeler

Sc
or
e

c

cAc
q.
 f
un
c.

 v
al
ue

Completed micro-
benchmarks

θfc

Next micro-benchmark

Figure 4: Overview of the CEF Optimizer.

the score of a configuration 𝑐 as follows:

Score(c) = w1 ×𝑀𝐶𝐶 (𝑐) − w2 × tanh(tt (c)
𝜃𝑡𝑡

− 1) (3)

whereMCC is the Matthews Correlation coefficient and 𝑡𝑡 the train-
ing time of the forecaster for the given configuration, while 𝜃𝑡𝑡 is
a set threshold for the training time. We use the Matthews Corre-
lation coefficient as a measurement of the quality of the forecasts
provided by Wayeb. MCC is calculated as follows:

MCC =
√︁
Precision × Recall × Specificity × NPV

−
√
FDR × FNR × FPR × FOMR

(4)

where NPV = TN
TN+FN , Specificity = TN

TN+FP , FDR = 1 − Precision,
FNR = 1 − Recall, FPR = 1 − Specificity and FOMR = 1 − NPV .

MCC estimates the correlation of the observed and forecast pat-
tern occurrences and its value ranges in the interval [-1,1]. A value
of +1 (or −1) demonstrates the total agreement (or disagreement)
between the observations and the forecasts of the framework, while
a MCC equal to 0 indicates that the performance of the framework
is equal to that of a random classifier. We decided to use the MCC
of the forecasts in the scoring function as it returns a high value
only when Wayeb succeeds in forecasting both the cases in which
a pattern occurred (TP) or not (TN), thus presenting a good indica-
tor of the performance of the engine even in imbalanced datasets.
On the contrary, other popular metrics, such as the 𝐹1 score, take
into consideration only the positive instances, i.e. the occurrence
of patterns in this case, and, thus, provide misleading results in
imbalanced datasets, as they fail to indicate the poor performance
of an engine that does not succeed in forecasting the absence of
pattern occurrences [13]. Therefore, although the 𝐹1 score is a more
popular metric, we consider MCC to be more appropriate for CEF.
The training time is measured in terms of milliseconds and includes
the time required to learn a Prediction Suffix Tree, to estimate the
waiting-time distributions for all automaton states and to construct
the forecasts for CLASSIFICATION-NEXTW. The total training time

is typically dominated by the time for estimating the waiting-time
distributions, especially for high values of the order m [5].

The scoring function defined in (3) takes into consideration not
only the accuracy of the forecasts, but also the amount of time
required to train the model, allowing us to obtain a well-rounded
estimation of the performance of each configuration in terms of
both predictive accuracy and required resources. The second term
of the scoring function acts as a penalty for the cost of the training
time. If the training time exceeds the threshold 𝜃𝑡𝑡 set by the user,
then the total score of the configuration is reduced relatively to
the cost of the training time. On the other hand, the score of the
configuration is increased if the training time is lower than 𝜃𝑡𝑡 ,
thus benefiting configurations that demand less training time. The
scoring function can take negative values, when the cost of the
training time outweighs the benefit of the accuracy of the forecast
provided by the engine for the given configuration. The scoring
function follows a preference-based approach by assigning weights
to the individual objective functions (MCC and tt). Thus, the scoring
function is the weighted sum of the single performance metrics
and describes the performance of the framework based on the
relevant preference of the end user. Hence, the scoring scheme is
applicable to a wide range of applications. Based on the nature
of each application a higher importance may be assigned to the
accuracy of the forecaster (e.g., in applications where accurate
forecasts are critical) or to the training time of the forecaster (e.g., in
applications that require fast forecasts tolerating some inaccuracy).

4 CEF OPTIMIZER
Figure 4 presents our proposed CEF Optimizer. The CEF Optimizer
incorporates three fundamental components along with the CEF
Engine: the Benchmarker, the Statistics Collector and the BO Cost
Modeler. The CEF Engine receives as input a training dataset for the
training layer of Wayeb and a validation dataset for the forecasting
layer. These datasets can be provided either using representative
historical data of the application field or during a warm up period
where the optimizer samples incoming event streams.

Optimizing Complex Event Forecasting DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

At the beginning of the optimization process the Benchmarker
Component (bottom of Figure 4) samples, uniformly, a number
𝑛0 of 𝑐 = [𝑚, 𝜃 𝑓 𝑐 , 𝑝𝑀𝑖𝑛, 𝛾] configurations from all possible such
combinations. It then uses the sampled configurations to perform
a set of initial micro-benchmarks, i.e., the CEF Engine runs. For
each such micro-benchmark, the CEF Engine (in our case Wayeb)
executes its training process using the training dataset. In that, a
Prediction Suffix Tree is learned at the training layer of Wayeb.
Then, this tree is used to calculate the waiting-time distribution
for every state of an automaton at the forecasting layer of Wayeb.
The accuracy of the forecasts is judged using the validation dataset
(left-hand side of Figure 4).

The Statistics Collector (middle of Figure 4) is responsible for
collecting statistics about the involved performance measures of
accuracy (𝑀𝐶𝐶) and training time (𝑡𝑡), respectively, from each
micro-benchmark. Then, it feeds the statistics into the BO Cost
Modeler Component (right-hand side of Figure 4).

The first time the BO Cost Modeler Component is used, it fits a
Gaussian Process Regressor around these initial statistics. After this
"fitting" phase, the BO Cost Modeler uses the acquisition function to
prescribe the next micro-benchmark, i.e., a new 𝑐 = [𝑚, 𝜃 𝑓 𝑐 , 𝑝𝑀𝑖𝑛,
𝛾] configuration, as input to the Benchmarker. New configurations
are then sampled and evaluated in an iterative manner, until we
reach a satisfactory configuration. What makes BO effective is that
this exploration is not exhaustive, ignoring and undersampling
regions of the parameter space from which previous samples did
not produce promising results.

Each time the Benchmarker receives a new request for execut-
ing a micro-benchmark, it queries back the BO Cost Modeler to
derive the current optimal (max) score (Equation 3) along with the
optimal CEF Engine configuration, 𝑐𝑜𝑝𝑡 in Figure 4, which yields
that score. This is illustrated at the bottom right part of Figure 4
with the bi-directional arrow between the Benchmarker and the
BO Cost Modeler. The bottom left part of Figure 4 shows the test
used by the Benchmarker to decide how the optimization process
should continue. If the optimization process has converged, i.e., the
optimal score has not changed significantly during recent micro-
benchmarks, the Benchmarker does not execute another micro-
benchmark. Instead, it exploits the current optimal configuration,
deploying the CEF Engine with 𝑐𝑜𝑝𝑡 parameters and the tuned CEF
Engine is put in production. Otherwise, the Benchmarker config-
ures the CEF Engine to execute another micro-benchmark, the one
just prescribed by the BO Cost Modeler. In the latter case, the opti-
mization process follows again the steps of single micro-benchmark
execution→ statistics collection→GPR update, <prescribed micro-
benchmark, 𝑐𝑜𝑝𝑡> pair extraction → convergence test.

5 EMPIRICAL ANALYSIS
5.1 Experimental Setup
We evaluated the performance of the CEF Optimizer on the domains
of maritime monitoring and credit card fraud management.

The score of each Wayeb configuration is estimated based on a 5-
fold cross validation. The training time is calculated as the required
time for the construction of the Prediction Suffix Tree, the Waiting-
Time Distribution and for the production of the forecasts. In each
repetition of the cross-fold validation, the Statistics Collector of

the optimizer measures the number of True Positive (TP), True
Negative (TN), False Positive (FP), False Negative (FN) forecasts.
The accuracy of the forecasts of each configuration is evaluated
as a macro-average of the performance of each cross-validation,
i.e. we calculate the 𝑀𝐶𝐶 as described in Equation (4) using the
cumulative sum of the TP , TN , FP , FN .

We simulated the randomness in the various steps of the empiri-
cal analysis, i.e. the random selection of the set n0 of initial points
(micro-benchmarks), using a pseudorandom number generator. The
use of different random number generator seeds in our experiments
allowed us not only to examine the application of the optimizer
under different experimental conditions but also to compare the
performance of different approaches under the same conditions.
The selection of the initial micro-benchmarks was based on uni-
form random sampling. Moreover, the BO Cost Modeler applies a
Gaussian Process Regressor (GPR) with a Matérn (v = 3/2) kernel
(see Equation (2)) and the Expected Improvement (EI) acquisition
function in order to estimate the objective function. The EI acquisi-
tion function considers both the probability and the magnitude of
the potential improvement yielded by a candidate configuration.

With respect to the scoring function, we assigned equal impor-
tance to the accuracy of the forecasts and the training time. Hence,
we set w1 = w2 = 0.5 in Equation (3).

5.2 Maritime Monitoring
In the first setting, we tested our CEF Optimizer against a real,
open dataset from the field of maritime monitoring2. During their
course, vessels emit AIS (Automatic Identification System)messages
that relay navigational information about the vessels’ course, such
as position, speed and heading. These messages are collected by
AIS base stations along the coastline, and are processed with the
purpose of monitoring the vessels and detecting interesting patterns
in their behavior. The dataset used in our experiments contains AIS
messages transmitted by vessels sailing around the port of Brest,
France, from 1 October 2015 to 31 March 2016 [44].

We evaluated the CEF Optimizer on a pattern defining when a
vessel approaches the main port of Brest. The Wayeb expression is:

𝑅 := (¬InsidePort (Brest))∗ · (¬InsidePort (Brest))·
(¬InsidePort (Brest)) · (InsidePort (Brest))

When a vessel has a distance of less than 5 km from the port of Brest,
InsidePort (Brest) evaluates to TRUE. In the pattern, an entrance to
the port is defined as a sequence of at least 3 consecutive events. At
least two events check whether the vessel is outside the port and
only the last event must satisfy the InsidePort (Brest) predicate. We
require that there are at least 2 events where the vessel was outside
the port, in order to avoid detecting exits, long stays inside the port
and “noisy” entrances.

In the first set of experiments, we compared the performance
of the CEF Optimizer against a sweep search in the parameter
space. Sweep search consisted of the evaluation of a finite set of
configurations. Wayeb’s hyperparameters span continuous value
ranges. Thus, it is impossible to exhaustively evaluate all the fea-
sible configurations of the parameter space and find the exact op-
timal configuration yielding the highest score. Our sweep search

2https://zenodo.org/record/1167595#.YkFm2S8Rqgc

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Vasileios Stavropoulos1 , Elias Alevizos1 , Nikos Giatrakos2,3 , Alexander Artikis4,1

Variable Lower Limit Upper Limit Step
m 1 5 1
𝜃fc 0.0 1.0 0.1
pMin 0.0001 0.01 0.002475
𝛾 0.0001 0.01 0.002475

Table 1: Sampling of the discrete grid of sweep search

approach discretizes Wayeb’s parameter space and evaluates only a
finite set of feasible configurations. In particular, the sweep search
benchmark consists of the evaluation of 1, 375 configurations. These
configurations are the points of the grid of the discrete version of
the parameter space, based on the sampling presented in Table 1.

Figure 5a illustrates the scores of the evaluated configurations of
the sweep search. In particular, Figure 5a presents the sampled areas
of the 4-dimensional configuration parameter space as a grid of
2D plots. The axes along each 2D subplot represent the confidence
threshold 𝜃 𝑓 𝑐 and pMin (symbols that appear with probability be-
low pMin are discarded) of the configurations. The subplots of each
row of the grid are defined by a common maximum order𝑚 of the
Prediction Suffix Tree and each column of the grid is defined by a
different sampled value for the smoothing parameter 𝛾 of the con-
figurations. As presented in Figure 5a, we observe an improvement
in the score of the configurations as we increase the value of the
smoothing parameter𝛾 of the configurations. Moreover, we observe
that the configurations with low to medium confidence thresholds
𝜃fc and with ordersm ranging from 1 to 3 perform noticeably better
than the rest of the configurations of the grid of sweep search.

Our optimizer identifies the configuration of Wayeb that yields
the highest score, i .e. the optimal configuration of the CEF Engine.
The optimization is based on the construction of an estimation of
the score yielded by the feasible configurations of the parameter
space. The updated probability distribution obtained at the end
of each iteration of the optimization provides an expected mean
score and standard deviation for each feasible configuration. The
probability distribution is used in order to select in an informative
manner the next configuration to evaluate based on the acquisition
function. Moreover, the distribution acts as an indicator of the
highest estimated score that can be achieved, as stated in the end
of Algorithm 1. Figure 5b represents the expected mean score of
the CEF Optimizer as a grid of 2𝐷 plots.

We observe that the areas estimated as more promising by our
optimizer, i.e. the areas containing configurations expected to have
the highest scores, are comparable to the areas found to contain
the best performing configurations during sweep search. This is a
significant result, since, in these experiments, the CEF Optimizer im-
plemented 32 micro-benchmarks, while sweep search implemented
1, 375 micro-benchmarks. In other words, our CEF Optimizer com-
putes the optimal configurations with minimal resource usage. Both
the optimizer and sweep search found that configurations with or-
der m = 3, 𝜃fc ranging from 0.1 to 0.5 and higher 𝛾 values yielded
the highest scores. Moreover, we observe that the configurations
of higher orders m yield higher scores for pMin ranging from 0.4
to 0.8. These optimal configurations succeed in balancing the finer
accuracy offered by a higher order model with the increased train-
ing times required for the construction of such high-order models.

In addition, the optimizer identifies not only the most effective
configurations but also the worst-performing ones, as indicated by
the lighter shaded areas of Figure 5b.

Figure 6a presents the highest scores yielded by the configura-
tions computed by: (a) sweep search and (b) the CEF Optimizer
for five different random seeds of initial micro-benchmarks. As
mentioned earlier, the optimizer discovers configurations that yield
scores comparable to the score obtained by the optimal configura-
tion of the discrete sweep search. Sampling in the continuous space,
as opposed to searching in a discretized version of the search space,
allows the CEF Optimizer to outperform, in some cases, sweep
search. Moreover, recall that the CEF Optimizer achieves these
scores by performing only 32 micro-benchmarks in comparison to
the 1, 375 micro-benchmarks of sweep search.

In our second set of experiments, we compared the performance
of our CEF Optimizer against a scenario where configurations are
sampled uniformly. Figure 6b illustrates the improvement of the
CEF Optimizer over the highest score achieved when selecting
configurations randomly. The optimizer is compared to the random
sampling of configurations in each of the five random seeds used.

We observe that the optimizer discovers more effective config-
urations, i.e. discovers a configuration that yields a higher score,
in all examined random seeds. Such a performance gain leads to
more accurate and timely forecasts, paving the way for proactive
decision-making. The optimizer exploits the information provided
by the acquisition function of the BO Cost Modeler and selects
the next micro-benchmark to conduct in an informative manner,
thus achieving a better guided search and ultimately discovering
higher-performing configurations.

According to Algorithm 1, a set of initial micro-benchmarks/
points 𝑛0 is used in order to place an initial probability distribution
over the objective function. These initial micro-benchmarks of the
optimizer are not sampled based on the acquisition function, but
are chosen at random. In our third set of experiments, we examined
the performance of the optimizer using a varying number of initial
micro-benchmarks. Figure 7a illustrates the estimated highest score
obtained at the end of the optimization process. The first bar of
each seed illustrates the highest estimated score after the initial-
ization of the CEF Optimizer using 2 micro-benchmarks, while the
second, third and fourth bars of each seed use 4, 8 and 16 initial
micro-benchmarks, respectively.We observe that the versions of the
CEF Optimizer which required 8 and 16 initial micro-benchmarks
achieve the highest score across all seeds in comparison to the ver-
sions requiring 2 and 4 initial micro-benchmarks. The evaluation
of more initial micro-benchmarks allows the optimizer to obtain
a clearer understanding of the configuration parameter space, al-
lowing it to focus on areas with high scoring configurations using
the acquisition function. The version of the CEF Optimizer that
is initialized with 8 micro-benchmarks presents the best perfor-
mance in the majority of the random seeds examined. It is, thus,
important to choose wisely the allocation of the total available
micro-benchmarks between the initial micro-benchmarks that are
chosen at random (used for the construction of an initial distribu-
tion) and the micro-benchmarks sampled based on the BO Cost
Modeler, i.e. the configurations selected exploiting the so-far avail-
able information by means of the acquisition function.

Optimizing Complex Event Forecasting DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

(a) The 1, 375 scores of sweep search. To aid legibility, we em-
ployed a black background.

(b) Estimated performance of the different areas of the configuration
parameter space by the CEF Optimizer.

Figure 5: Maritime monitoring: Comparison of sweep search and the CEF Optimizer. Darker colors represent configurations
that yield higher scores. The colorbar applies to the discrete points of figure (a) and the surface of figure (b).

(a) (b)

Figure 6: Maritime monitoring: (a) The best scores obtained
by sweep search and the CEF Optimizer. (b) Improvement of
the score by the CEF Optimizer over the best score obtained
by random evaluations.

Figure 7b displays the highest score achieved by the optimizer
during the optimization process. In these experiments, the initial
number of micro-benchmarks was set to 8, while the optimizer used
the acquisition function for 24 more micro-benchmarks. Figure 7b
shows that the optimizer converges even before the 32nd micro-
benchmark. The optimizer, thus, fine-tunes the CEF Engine early
in the optimization process, leading to significant gains in resource
usage, as opposed to, say, an exhaustive search, such as the sweep
search benchmark presented earlier.

(a) (b)

Figure 7: Maritime monitoring: (a) Highest estimated score
discovered by the CEF Optimizer initialized with a varying
number of micro-benchmarks. (b) Convergence of the opti-
mization process.

5.3 Credit Card Fraud Management
In the second setting of our experiments we used a synthetic dataset
from the domain of credit card fraud management provided by
Feedzai 3. Each event of the dataset represents a credit card trans-
action and is accompanied by details of the transaction, such as
the credit card ID, the amount and time of the transaction, etc. We
evaluated our CEF Optimizer in a pattern representing a fraudulent

3https://feedzai.com/

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Vasileios Stavropoulos1 , Elias Alevizos1 , Nikos Giatrakos2,3 , Alexander Artikis4,1

(a) (b)

Figure 8: Credit card fraud management: (a) The best scores
obtained by sweep search and the CEF Optimizer. (b) Im-
provement of the score by the CEF Optimizer over the best
score obtained by random evaluations.

behavior as a sequence of consecutive increasing transactions [8].
The Wayeb expression is:

𝑅 :=(amountDiff > 0) · (amountDiff > 0) · (amountDiff > 0)·
(amountDiff > 0) · (amountDiff > 0) · (amountDiff > 0)·
(amountDiff > 0)

Each event is enriched with an additional attribute amountDiff
(on top of the standard attributes of credit card ID, etc.) that is
equal to the difference between the amount spent by the current
and immediately previous transactions. When the amount spent
on the current transaction is greater than the amount spent on the
immediately previous transaction, (amountDiff > 0) evaluates to
TRUE. The examined pattern defining the credit card fraud requires
the occurrence of 8 consecutive increasing transactions.

In our experiments, the CEF Optimizer succeeds in discovering
configurations that yield scores comparable to that of the opti-
mal discovered by sweep search, as seen in Figure 8a. Similar to
the maritime use case, the optimizer discovers high-performing
configurations requiring only 32 micro-benchmarks, considerable
fewer than the 1, 375 micro-benchmarks required by sweep search.
Thus, the optimizer succeeds in approximating the highest scores
achieved by a sweeping exploration of the configuration parameter
space while requiring significantly fewer micro-benchmarks.

In the second set of our experiments on credit card fraud manage-
ment, we compare the performance of the CEF Optimizer against
the evaluation of randomly uniformly sampled configurations. Fig-
ure 8b presents the improvement of the CEF Optimizer over the
highest score achieved by the random sampling of configurations.
We observe that the CEF Optimizer discovers better-performing
configurations when compared to the evaluation of randomly se-
lected configurations in all examined random seeds.

Figure 9a demonstrates the highest estimated scores obtained
by different versions of the CEF Optimizer at the end of the op-
timization process. The different versions of the optimizer use a
varying number of initial micro-benchmarks. We observe that the
highest estimated score in the majority of the examined seeds is
achieved by the version of the optimizer that requires 16 initial
micro-benchmarks.

(a) (b)

Figure 9: Credit card fraud management: (a) Highest esti-
mated score discovered by the CEF Optimizer initialized with
a varying number of micro-benchmarks. (b) Convergence of
the optimization process.

Figure 9b presents the convergence of the highest estimated
score of the CEF Optimizer throughout the optimization process. In
these experiments, the optimizer used 16 initial micro-benchmarks
for the creation of an initial probability distribution and proceeded
with another 16 micro-benchmarks using the acquisition function.
Figure 9b shows that 32 micro-benchmarks are sufficient to reach
convergence.

6 RELATEDWORK
In the CER domain, most optimization approaches aim at increasing
the CER Engine’s throughput, i.e., number of tuples being processed
per time unit [1, 9, 19, 36, 41, 42, 47, 50, 53]. Secondary optimization
metrics relate to reducing processing latency or to optimally control
memory utilization. The concepts used in these techniques essen-
tially adapt common query optimization practices, such as early
evaluation of predicates and query rewriting, to the CER context.
Flouris et al [21] provide a concise summary on such techniques.
Giatrakos et al [25] discuss techniques for efficiently executing CER
over parallel and geo-distributed settings. None of these approaches
deals with Complex Event Forecasting.

Forecasting has been a very active research direction in vari-
ous fields. Time-series forecasting is a well-known example [37].
Time-series forecasting typically focuses on streams of (mostly)
real-valued variables and the goal is to forecast relatively simple
patterns. Sequence prediction is another field with a long history of
contributions [10, 16, 45, 46, 52]. In this case, the goal is to predict
the next symbol(s) to occur in sequences constructed from finite al-
phabets. However, pattern forecasting is outside the scope of these
efforts. A similar line of work has developed recently concerning
event sequence prediction and point-of-interest recommendations
through the use of neural networks [12, 33]. The focus is again on
input (and not complex) event forecasting. A significant number of
forecasting methods comes from the field of temporal pattern min-
ing, where patterns are usually defined either as association rules
[2] or as frequent episodes [34]. Typical examples may be found in
[14, 31, 49, 59]. The proposed methods from this field try to forecast
simple patterns, defined either as strict sequences or as sets of input
events. They also typically make the assumption that input streams
are composed of symbols from a finite alphabet. The field of process

Optimizing Complex Event Forecasting DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

mining (and process prediction) is more closely related to CEF [48].
Processes are typically defined as transition systems (e.g., automata
or Petri nets) and are used to monitor a system, e.g., for confor-
mance testing. Process mining attempts to automatically learn a
process from a set of traces, i.e., a set of activity logs. Since 2010, a
significant body of work has appeared, targeting process prediction,
where the goal is to forecast if and when a process is expected to be
completed (for surveys, see [22, 35]). An important difference is that
processes are usually given directly as transition systems, whereas
CER patterns are defined in a declarative manner. The transition
systems defining processes are usually composed of long sequences
of events. On the other hand, CER patterns are shorter, may involve
Kleene-star, iteration operators (usually not present in processes)
and may even be instantaneous. Another important difference is
that process prediction focuses on traces, which are complete, full
matches, whereas CEF focuses on continuously evolving streams
which may contain many irrelevant events. The limitation that is
common to all of the above proposals is that they do not target
complex events defined in a declarative manner through a proper
language. They focus either on input events or on very simple
patterns. Additionally, they often cannot accommodate multiple
variables of different types (both numerical and categorical).

Complex Event Forecasting (CEF) attempts to address these chal-
lenges, as described in various conceptual proposals [15, 20, 24].
In [39], Hidden Markov Models (HMM) are used to construct a
probabilistic model for the behavior of a transition system describ-
ing a complex event. Automata (for describing complex events)
and Markov chains (for building a probabilistic model) are used
in [38], the first concrete attempt at CEF. Wayeb, the CEF Engine
that we use, follows a similar approach, but it uses high-order
Markov models [3–5]. Recently, a different approach was proposed
in [32]. Knowledge graphs are used to encode events and their
timing relationships. However, this method would more properly
fall under the category of input event forecasting and it does not
support a language with which to define complex events. None of
the above mentioned proposals attempts to automatically optimize
their hyper-parameters, without resorting to an exhaustive search.
We present the first such attempt.

The work most relevant to ours is that of EasyFlinkCEP [26]
which employs Bayesian Optimization (BO) to auto-tune the op-
timal parallelism of FlinkCEP programs based on the specified
pattern, selection and consumption policies as well as window
specifications [25, 26]. EasyFlinkCEP does not support forecasting
and does not consider predictive accuracy. Instead, it focuses on
optimizing system-oriented metrics, such as throughput, making
proper use of available resources. Therefore, it lacks the ability to
provide the means for proactive measures to the involved appli-
cations. On the contrary, our optimizer tunes CEF parameters to
achieve balance between training speed and forecasting accuracy.

Various approaches have been proposed in the literature for op-
timising Big Data management systems. CherryPick [7] aims at
creating accurate performance models for finding (near-)optimal
deployments (e.g., number and types of VM instances) that satisfy
a performance target. It is low-overhead and applies BO to a few
samples of deployment configurations in order to obtain a perfor-
mance prediction for the full set of potential setups. Kunjir and

Babu [30] compare black box methods, including BO and Deep Dis-
tributed Policy Gradient, against a proposed white-box algorithm
to determine close-to-optimal tuning for memory-based analytics.

Broader machine learning techniques have been used for fine-
tuning efficient cloud configurations and for workload estimation
or query performance prediction of data management systems in
the cloud. Seagull [40] uses machine learning models to predict cus-
tomer load per server, and optimize service operations for database
systems in the cloud. CBTune [58] uses Reinforcement Learning
and utilizes a deep deterministic policy gradient method to find the
optimal database instance configurations in high-dimensional con-
tinuous spaces. CDBTune adopts a try-and-error strategy to learn
knob settings with a limited number of samples for initial training. It
also adopts a reward-feedback mechanism in Reinforcement Learn-
ing to accelerate the convergence of the model. Herodotou et al [29]
provide a concise survey of machine learning-based techniques,
including BO, for tuning Big Data management systems.

7 SUMMARY & FUTUREWORK
We introduced the first CEF Optimizer tailored to automatically
tune Complex Event Forecasting engines to be effectively deployed
in real-world application scenarios. In that, we achieved to remove
from field experts and business analysts the burden of properly
configuring the CEF Engine and we allowed them to focus on cor-
rectly expressing business needs in the form of patterns. Our CEF
Optimizer achieved appropriate balance between the conflicting op-
timization objectives of reducing training time and increasing fore-
casting accuracy by learning the behavior of an objective function
that incorporates the involved performance criteria. We proposed
a novel architecture for the CEF Optimizer and we reasoned about
our design choices. We applied the CEF Optimizer on a state-of-the-
art CEF Engine, namely Wayeb. A detailed empirical analysis on
two real-world scenarios from the maritime and financial domain
demonstrated the applicability and the effectiveness of the CEF
Optimizer in prescribing near-optimal CEF Engine configurations
using only a sample of CEF Engine runs, out of an infinite set.

Our future work concentrates on extending our CEF Optimizer
to render it capable not only of taking optimization decisions before
deploying the CEF Engine, but also to perform adaptive parameter
tuning of the CEF Engine at runtime. This is useful in order to
handle scenarios of highly volatile event distributions and statistical
properties of raw streams.

ACKNOWLEDGMENTS
This work has received funding from the EUHorizon 2020 programs
INFORE under grant agreement No 825070 and VesselAI under
grant agreement No 957237.

REFERENCES
[1] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. 2008. Effi-

cient Pattern Matching over Event Streams. In SIGMOD.
[2] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. 1993. Mining Associa-

tion Rules between Sets of Items in Large Databases. In SIGMOD.
[3] Elias Alevizos, Alexander Artikis, and George Paliouras. 2017. Event Forecasting

with Pattern Markov Chains. In DEBS.
[4] Elias Alevizos, Alexander Artikis, and George Paliouras. 2018. Wayeb: a Tool for

Complex Event Forecasting. In LPAR.
[5] Elias Alevizos, Alexander Artikis, and Georgios Paliouras. 2022. Complex event

forecasting with prediction suffix trees. VLDB J. 31, 1 (2022), 157–180.

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Vasileios Stavropoulos1 , Elias Alevizos1 , Nikos Giatrakos2,3 , Alexander Artikis4,1

[6] Elias Alevizos, Anastasios Skarlatidis, Alexander Artikis, and Georgios Paliouras.
2017. Probabilistic Complex Event Recognition: A Survey. ACM Comput. Surv.
50, 5 (2017), 71:1–71:31.

[7] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,
Minlan Yu, and Ming Zhang. 2017. CherryPick: Adaptively Unearthing the Best
Cloud Configurations for Big Data Analytics. In NSDI.

[8] Alexander Artikis, Nikos Katzouris, Ivo Correia, Chris Baber, Natan Morar, Inna
Skarbovsky, Fabiana Fournier, and Georgios Paliouras. 2017. A Prototype for
Credit Card Fraud Management: Industry Paper. In Proceedings of DEBS. ACM.

[9] Roger S. Barga, Jonathan Goldstein, Mohamed Ali, and Minsheng Hong. 2007.
Consistent Streaming Through Time: A Vision for Event Stream Processing. In
CIDR.

[10] Ron Begleiter, Ran El-Yaniv, and Golan Yona. 2004. On Prediction Using Variable
Order Markov Models. J. Artif. Intell. Res. 22 (2004), 385–421.

[11] Eric Brochu, Vlad M. Cora, and Nando de Freitas. 2010. A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to Active User
Modeling and Hierarchical Reinforcement Learning.

[12] Buru Chang, Yonggyu Park, Donghyeon Park, Seongsoon Kim, and Jaewoo
Kang. 2018. Content-Aware Hierarchical Point-of-Interest Embedding Model for
Successive POI Recommendation. In IJCAI.

[13] Davide Chicco and Giuseppe Jurman. 2020. The advantages of the Matthews
correlation coefficient (MCC) over F1 score and accuracy in binary classification
evaluation. BMC Genomics 21, 1 (jan 2020).

[14] Chung-Wen Cho, Yi-Hung Wu, Show-Jane Yen, Ying Zheng, and Arbee L. P.
Chen. 2011. On-line rule matching for event prediction. VLDB J. 20, 3 (2011),
303–334.

[15] Maximilian Christ, Julian Krumeich, and AndreasW. Kempa-Liehr. 2016. Integrat-
ing Predictive Analytics into Complex Event Processing by Using Conditional
Density Estimations. In EDOC Workshops.

[16] John G. Cleary and Ian H. Witten. 1984. Data Compression Using Adaptive
Coding and Partial String Matching. IEEE Trans. Communications 32, 4 (1984),
396–402.

[17] Gianpaolo Cugola andAlessandroMargara. 2012. Processing flows of information:
From data stream to complex event processing. ACM Comput. Surv. 44, 3 (2012),
15:1–15:62.

[18] L D’Antoni and M Veanes. 2017. The Power of Symbolic Automata and Trans-
ducers. In CAV (1).

[19] Alan Demeers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald, Varun
Sharma, and Walker White. 2007. Cayuga: A General Purpose Event Monitoring
System. In CIDR.

[20] Yagil Engel and Opher Etzion. 2011. Towards proactive event-driven computing.
In DEBS.

[21] Ioannis Flouris, Nikos Giatrakos, Antonios Deligiannakis, Minos N. Garofalakis,
Michael Kamp, and Michael Mock. 2017. Issues in complex event processing:
Status and prospects in the Big Data era. J. Syst. Softw. 127 (2017), 217–236.

[22] Chiara Di Francescomarino, Chiara Ghidini, Fabrizio Maria Maggi, and Fredrik
Milani. 2018. Predictive Process Monitoring Methods: Which One Suits Me Best?.
In BPM.

[23] Peter I. Frazier. 2018. A Tutorial on Bayesian Optimization.
[24] Lajos Jeno Fülöp, Árpád Beszédes, Gabriella Toth, Hunor Demeter, László Vidács,

and Lóránt Farkas. 2012. Predictive complex event processing: a conceptual
framework for combining complex event processing and predictive analytics. In
BCI.

[25] Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligiannakis, and
Minos N. Garofalakis. 2020. Complex event recognition in the Big Data era: a
survey. VLDB J. 29, 1 (2020), 313–352.

[26] Nikos Giatrakos, Eleni Kougioumtzi, Antonios Kontaxakis, Antonios Deligian-
nakis, and Yannis Kotidis. 2021. EasyFlinkCEP: Big Event Data Analytics for
Everyone. In CIKM.

[27] Alejandro Grez, Cristian Riveros, Martín Ugarte, and Stijn Vansummeren. 2020.
On the Expressiveness of Languages for Complex Event Recognition. In ICDT.

[28] Alejandro Grez, Cristian Riveros, Martín Ugarte, and Stijn Vansummeren. 2021.
A Formal Framework for Complex Event Recognition. ACM Trans. Database Syst.
46, 4 (2021), 16:1–16:49.

[29] HerodotosHerodotou, Yuxing Chen, and Jiaheng Lu. 2020. A Survey onAutomatic
Parameter Tuning for Big Data Processing Systems. ACM Comput. Surv. 53, 2
(2020), 43:1–43:37.

[30] Mayuresh Kunjir and Shivnath Babu. 2020. Black or White? How to Develop an
AutoTuner for Memory-based Analytics. In SIGMOD.

[31] Srivatsan Laxman, Vikram Tankasali, and RyenW.White. 2008. Stream prediction
using a generative model based on frequent episodes in event sequences. In KDD.

[32] Yan Li, Tingjian Ge, and Cindy X. Chen. 2020. Data Stream Event Prediction
Based on Timing Knowledge and State Transitions. Proc. VLDB Endow. 13, 10
(2020), 1779–1792.

[33] Zhongyang Li, Xiao Ding, and Ting Liu. 2018. Constructing Narrative Event
Evolutionary Graph for Script Event Prediction. In IJCAI.

[34] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. 1997. Discovery of
Frequent Episodes in Event Sequences. Data Min. Knowl. Discov. 1, 3 (1997),
259–289.

[35] Alfonso Eduardo Márquez-Chamorro, Manuel Resinas, and Antonio Ruiz-Cortés.
2018. Predictive Monitoring of Business Processes: A Survey. IEEE Trans. Services
Computing 11, 6 (2018), 962–977.

[36] Yuan Mei and Samuel Madden. 2009. Zstream: A Cost-based Query Processor
for Adaptively Detecting Composite Events. In SIGMOD.

[37] Douglas CMontgomery, Cheryl L Jennings, andMurat Kulahci. 2015. Introduction
to time series analysis and forecasting. John Wiley & Sons.

[38] Vinod Muthusamy, Haifeng Liu, and Hans-Arno Jacobsen. 2010. Predictive
publish/subscribe matching. In DEBS.

[39] Suraj Pandey, Surya Nepal, and Shiping Chen. 2011. A test-bed for the evaluation
of business process prediction techniques. In CollaborateCom.

[40] Olga Poppe, Tayo Amuneke, and et al. 2020. Seagull: An Infrastructure for Load
Prediction and Optimized Resource Allocation. Proc. VLDB Endow. 14, 2 (2020),
154–162.

[41] Olga Poppe, Chuan Lei, Elke A. Rundensteiner, andDanDougherty. 2016. Context-
aware Event Stream Analytics. In EDBT.

[42] Yingmei Qi, Lei Cao, Medhabi Ray, and Elke A. Rundensteiner. 2014. Complex
Event Analytics: Online Aggregation of Stream Sequence Patterns. In SIGMOD.

[43] Carl Edward Rasmussen and Christopher K I Williams. 2005. Gaussian processes
for machine learning. MIT Press.

[44] Cyril RAY, Richard DRÉO, Elena CAMOSSI, and Anne-Laure JOUSSELME. 2018.
Heterogeneous Integrated Dataset for Maritime Intelligence, Surveillance, and Re-
connaissance.

[45] Dana Ron, Yoram Singer, and Naftali Tishby. 1993. The Power of Amnesia. In
NIPS.

[46] Dana Ron, Yoram Singer, and Naftali Tishby. 1996. The Power of Amnesia: Learn-
ing Probabilistic Automata with Variable Memory Length. Machine Learning 25,
2-3 (1996), 117–149.

[47] Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter Pietzuch. 2009.
Distributed Complex Event Processing with Query Rewriting. In DEBS.

[48] Wil Van Der Aalst. 2011. Process mining: discovery, conformance and enhancement
of business processes. Springer-Verlag.

[49] Ricardo Vilalta and ShengMa. 2002. Predicting Rare Events In Temporal Domains.
In ICDM.

[50] Di Wang, Elke A. Rundensteiner, and Richard T. Ellison, III. 2011. Active Complex
Event Processing over Event Streams. Proc. VLDB Endow. 4 (2011), 634–645.

[51] Jie Wang. 2021. An Intuitive Tutorial to Gaussian Processes Regression.
[52] Frans M. J. Willems, Yuri M. Shtarkov, and Tjalling J. Tjalkens. 1995. The context-

tree weighting method: basic properties. IEEE Trans. Information Theory 41, 3
(1995), 653–664.

[53] Eugene Wu, Yanlei Diao, and Shariq Rizvi. 2006. High Performance Copmlex
Event Processing over Streams. In SIGMOD.

[54] Zhengdao Xu and Hans-Arno Jacobsen. 2007. Adaptive location constraint
processing. In SIGMOD.

[55] Zhengdao Xu and Hans-Arno Jacobsen. 2007. Evaluating Proximity Relations
Under Uncertainty. In ICDE.

[56] Zhengdao Xu and Hans-Arno Jacobsen. 2009. Expressive Location-Based Con-
tinuous Query Evaluation with Binary Decision Diagrams. In ICDE.

[57] Zhengdao Xu and Hans-Arno Jacobsen. 2010. Processing proximity relations in
road networks. In SIGMOD.

[58] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. 2019. An
End-to-EndAutomatic CloudDatabase Tuning SystemUsingDeep Reinforcement
Learning. In SIGMOD.

[59] Cheng Zhou, Boris Cule, and Bart Goethals. 2015. A pattern based predictor for
event streams. Expert Syst. Appl. 42, 23 (2015), 9294–9306.

	Abstract
	1 Introduction
	2 Background
	2.1 Complex Event Recognition
	2.2 Complex Event Forecasting
	2.3 Bayesian Optimization

	3 Problem Statement
	4 CEF Optimizer
	5 Empirical Analysis
	5.1 Experimental Setup
	5.2 Maritime Monitoring
	5.3 Credit Card Fraud Management

	6 Related Work
	7 Summary & Future Work
	Acknowledgments
	References

