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ABSTRACT
In this paper, we present a solution to the DEBS 2022 Grand Chal-
lenge (GC). According to the GC requirements, the proposed soft-
ware continuously observes notifications about financial instru-
ments being traded, aiming to timely detect breakout patterns. Our
solution leverages Apache Flink, an open-source, scalable stream
processing platform, which allows us to process incoming data
streams with low latency and exploit the parallelism offered by the
underlying computing infrastructure.
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1 INTRODUCTION
Financial markets generate huge amounts of real-time data asso-
ciated with various kinds of events (e.g., bids, trades), which are
commonly referred to asmarket data. For instance, Infront reported
24 billions of daily event notifications processed on average in 2021,
with an increase of 33% with respect to 2019 [6]. Managing such
an enormous volume of data is a technically challenging task of
paramount importance for financial traders and analysts, who must
continuously observe and react to complex market dynamics (e.g.,
to identify investment opportunities).

The DEBS 2022 Grand Challenge (GC) [8] revolves around the
analysis of financial market data in real time. In particular, the goal
of the GC is to efficiently compute specific trend indicators and
detect patterns resembling those used by traders to decide on buying
or selling [12], thus providing a tool to support traders in their
decisions. For this purpose, the GC relies on a data set [7] of real-
world tick data provided by Infront Financial Technology, which
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comprises information about more than 5,000 financial instruments
being traded on three major exchanges over the course of a week.

In this context, the GC requires participants to develop a software
solution that continuously computes answers to two queries on the
given data set. The first query (Query 1) hinges on one of the most
essential indicators used in technical analysis to identify trends,
namely the exponential moving average (EMA). The second query
(Query 2) builds on top of Query 1 and aims to detect interesting
breakout patterns by observing the per-symbol EMA computed at
different intervals. Both the queries must be computed by grouping
incoming events in 5-minute non-overlapping windows.

In this paper, we present a solution to both the queries. Our solu-
tion relies on two well-known open-source distributed frameworks:
Apache Kafka for data ingestion and Apache Flink for stream pro-
cessing. Event notifications replayed from the data set are pushed
into Kafka topics. A Flink application consumes messages from the
topics and computes the required indicators for both the queries.

The remainder of this paper is organized as follows. In Sec. 2
we provide background information about the market data anal-
ysis performed in the GC as well as the framework we used for
implementing the solution. In Sec. 3 we describe the solution we
developed and report evaluation results in Sec. 4. We conclude in
Sec. 5 with some final remarks.

2 BACKGROUND
2.1 Real-Time Detection of Breakout Patterns
Nowadays, tracking and evaluating quantitative financial indicators
is a fundamental activity for traders aiming to identify trends in
the development of instrument price in a timely manner. As prices
can rapidly increase and decrease, quickly identifying the start
of a trend is crucial to be able to buy (or sell) so as to maximize
the profits (or, at least, minimize the loss). Furthermore, exploiting
predictive analytics, applications may even help traders to identify
trends before they actually start.

The DEBS GC defines two queries to be computed against finan-
cial market data, which revolve around the aforementioned goals.
Query 1 involves one of the most essential indicators used to iden-
tify trends, i.e., the exponential moving average (EMA). To provide
an answer to Query 1, we need to compute the EMA per symbol for
every event window. Therefore, the latest observed price in the cur-
rent window is weighted and summed to the previously computed
EMA. Such quantitative indicators are then exploited in Query 2,
where we aim to detect trends in the instrument prices. Indeed, by
tracking the EMA computed over different time intervals, we can
identify breakout patterns for each symbol.

In general, breakout patterns describe relevant variations in the
development of a price that possibly indicate the start of a trend,
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even if only temporary [5]. We are interested in detecting two differ-
ent patterns: bullish breakouts, when the price is starting to rise, and
bearish breakouts, when the price is decreasing. Properly identify-
ing these trends in a timely manner allows traders to monetize this
knowledge by immediately buying, in case of a bullish breakout, or
selling, in case of a bearish breakout, to maximize revenue.

Relying on the computed EMA over a shorter time interval 𝑗1 and
a longer time interval 𝑗2, we can detect a bullish breakout pattern
for a symbol when the EMA associated with 𝑗1 starts to overtake the
EMAwith 𝑗2. When this happens, we should immediately notify the
trader so as to benefit from a relatively low price. In this aim, within
the GC intervals have the granularity of minutes and, specifically,
we have 𝑗1 = 38 and 𝑗2 = 100.

Based on analogous reasoning, we detect a bearish breakout
pattern for a symbol when the EMA associated with 𝑗2 starts to
overtake the EMA associatedwith 𝑗1. When this happens, we should
immediately generate a sell advice notification so that a trader
can still sell at a relatively high price. As per the GC instructions,
we again adopt a granularity of minutes and use the same EMA
intervals specified above for the bullish breakout.

The GC require participants to provide responses to both the
queries. In order to evaluate and benchmark the solutions, the plat-
form used by GC organizers mimics the usual behavior of traders
using market terminal solutions, as they subscribe to sets of sym-
bols for which they want to track particular events and opportuni-
ties (e.g., buy and sell advice notifications). Therefore, GC solution
must process batches of trading events and handle subscriptions
to symbols. To solve Query 1, the solution is expected to provide
the latest EMA for 𝑗1 and 𝑗2 for each subscribed symbol in every
batch. To solve Query 2, the solution is expected to provide the last
3 crossovers (buy/sell) notifications with the associated timestamps
for each subscribed symbol. For both the queries, incoming events
must be processed in 5-minute non-overlapping (i.e., tumbling)
windows. Furthermore, windows cannot be evaluated before the
next window starts.

2.2 Apache Flink
Apache Flink [3] is an open-source, distributed engine for stateful
computation over both bounded and unbounded data sets (i.e., it
supports both batch and streaming computations). Flink has gained
a lot of traction over the years as it combines high-level processing
APIs, which ease development efforts, and a scalable computation
engine, which promises high throughput and low latency for a
wide range of use cases. Not surprisingly, Flink has been frequently
adopted by DEBS GC participants (e.g., [9–11, 13, 14]).

Flink architecture comprises three key components, namely the
client, the TaskManager and the JobManager. The client allows users
to submit and manage jobs to a running cluster. Actual data pro-
cessing is carried out within one or more distributed TaskManagers.
The JobManager is a centralized entity, responsible for coordinating
the distributed execution of jobs in the cluster by communicating
with the TaskManagers, as well as scheduling components (specifi-
cally, subtasks, which are the actual execution units in Flink) to the
TaskManagers.

As regards application development, Flink offers various levels of
abstractions to define the processing logic as a series of data-centric

transformations [1], ranging from a low-level stream processing
API, where users can manually define the logic applied to each in-
coming event, to higher-level SQL-oriented APIs. Furthermore, spe-
cialized libraries are available to solve common analytics use-cases
(e.g, complex event processing and graph analytics). To support the
definition of streaming applications, Flink has native mechanisms
to easily cope with state management, windowing and late events,
which represent key challenges for streaming systems.

Flink provides support to ingest data streams from different
sources; specifically, it provides an Apache Kafka connector for
reading data from and writing data to Kafka topics with exactly-
once guarantees. Kafka is currently the most popular open-source
distributed framework used to ingest data streams into the process-
ing platforms.

Fault tolerance plays a key role in the design of Flink, which
features an efficient and closely integrated mechanism to take state
snapshots at run-time [2]. By means of this mechanism, frequent
computation checkpoints can be created during execution, enabling
quick recovery in case of failures.

3 PROPOSED SOLUTION
In this section we describe our solution to the DEBS GC. We first
give a high-level overview of the approach. Then, we describe the
Flink streaming topology used for data processing, before discussing
implementation details.

Flink Application

Figure 1: Overview of the solution.

3.1 Overview
As illustrated in Fig. 1, our solution relies on Apache Kafka for data
ingestion and Apache Flink for data processing. Incoming trading
data are pushed to a Kafka topic and consumed by a Flink job.
In such a scenario, Flink provides consistent data movement and
computation, while Kafka provides data durability and exactly-once
delivery guarantees.

Our solution comprises twomain application components, which,
respectively, act as the producer of the streaming data and the con-
sumer, from Kafka point of view. The producer reads data from
the gRPC API provided within the GC and sends them to a Kafka
topic. These events are consumed by the Flink application, which
subscribes to the Kafka topic and processes incoming data.

The Kafka Producer, given the address of a Kafka cluster and the
name of the topic we want to use, creates a client to connect to a
gRPC server provided by the GC. This connection provides means
for both retrieving batches containing input events and publishing
the results of the computation, as well as evaluating the solution
performance. Batches of incoming events are parsed before they
are sent to Kafka for analysis.
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Figure 2: Stream processing application used within our solution.

The Flink job is fed with data from the Kafka topic. The no-
tion of time used within our application relies on the event time
associated with the input data stream, i.e., the time when each
individual event occurred, as specified in the GC data set. In this
scenario, the progress of time depends on the data and does not
depend on any wall clock time. Event timestamps are typically
embedded within the records before they enter Flink and can be
retrieved as needed. Specifically, when reading data from Kafka,
we automatically extract the message timestamp for each event.

The integration between Kafka and Flink is easily realized thanks
to the built-in Kafka connector provided by Flink. In the next sec-
tion, we will describe the streaming topology we use for data pro-
cessing.

3.2 Flink Topology
The core data processing tasks required by our solution are per-
formed by a Flink streaming application. Figure 2 provides an il-
lustration of the logical building blocks comprising the streaming
topology. Incoming events are retrieved by a data source from Kafka
and then parsed. Since the Query 1 indicators must be computed
separately for each traded symbol, we group incoming events based
on their associated symbol. Then, according to the GC requirements,
we group events into non-overlapping 5-minute windows. As soon
as each window is complete, we compute the EMA indicators re-
quired for Query 1. The computed EMA are also used to identify
the breakout patterns for Query 2 and produce notifications as the
result.

Considering the definition of the topology described above in
Flink, the first operator applied to the incoming stream is a map,
which parses string-serialized events and extracts the event at-
tributes useful for computation. Parsed events are then processed
by a keyBy operator, which produces a keyed stream, partitioning
the events by symbol.

The keyed stream flows into 5-minute tumbling windows. We
apply custom aggregation and processing functions to each window,
so as to specify the computation that we want to perform on each
event window once the system determines that it is complete, i.e.,
ready for processing. Then, we apply a windowAll that collects
the output of previous window functions for all the symbols. The
last operator is a custom process function that properly prepares

output results, before sending them to a Kafka sink, where they are
published.

3.3 Implementation Details
The source code of our solution has been publicly released.1 The
programming language used for implementation is Java.

Input event parsing is realized by extending the MapFunction
class with the class MapFunctionEvent, in order to parse strings re-
ceived by the data source and return a DataStream of Event objects.
The Event class was realized to save each record and its attributes
useful to computation. The core query computation occurs inside
window functions, implemented by means of two classes MyAg-
gregateFunction and MyProcessWindowFunction. The first one aims
to aggregate intermediate results within a window, so its add()
method (used for aggregation) is called for each new event entering
the window. The second class instead is used to evaluate windows
when they are complete.

An AggregateFunction requires an Accumulator object to be
defined. We created a new class MyAccumulator to keep track of
the last price for each symbol within the current window and the
batches where each symbol appears within the window. These data
are eventually passed to MyProcessWindowFunction class, which
computes the required indicators. Specifically, this class uses the
following key-valued state information to keep track of relevant
data for query computation:

• count of window number;
• EMA(38) and EMA(100) computed in the previous window
for each symbol;

• previous crossovers (buy/sell) notifications for each symbol.
As regards Query 1, since the result is expected to be returned per

batch, we need to keep track of all symbols with their EMAs despite
the batch they belong to. Indeed, a batch might have a variable size
that could be longer or shorter than window length, but a window is
evaluated only when event timestamps reach its end. Therefore, in
order to compute EMAs we call the computeEMA() method, which
first checks whether it is the first time ever that a given symbol
(i.e., key of the stream) appears. If it does, the last EMA for that
symbol is set to 0 as required, otherwise the last EMA is retrieved.
Then, we update the EMA and store the corresponding result with

1https://github.com/ceciliacal/DEBS_2022
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Figure 3: Throughput of our solution.

the proper key for future computation. This approach is clearly
adopted to compute both EMA(38) and EMA(100).

Query 2 requires us to detect breakout patterns. To find a bullish
pattern we check if EMA(38) is larger than EMA(100) in the current
window and EMA(38) is less or equal than EMA(100) in the previ-
ous window; otherwise, we possibly discover a bearish pattern if
EMA(38) is less than EMA(100) in the current window and EMA(38)
is larger than or equal to EMA(100) in the previous one. If any
pattern is found, the current window end timestamp is included in
the generated notification.

Our solution can be configured to run under different parallelism
settings, thanks to Flink fine-grained parallelism configurability. In
particular, depending on the computing infrastructure in use, our
software can scale from a single-core machine to multiple cores
and nodes.

4 EVALUATION
To evaluate the performance of our solution, we deploy it on a single
Amazon EC2 c4.2xlarge instance, equipped with 8 vCPUs and
16 GB of memory. We also run Kafka on the same machine. For this
purpose, we used Docker containers to run Kafka and Zookeeper
and deployed them using docker-compose.

We consider different settings by varying the number of vCPUs
available to our application components, from 2 to 8 (i.e., all the
vCPUs of the machine). Figure 3 shows the throughput achieved
in the experiments. Our solution manages to process 8.46 event
batches per second when allowed to use all the vCPUs available on
the machine. When restricted to just 2 vCPUs, the solution achieves
about half the throughput and, specifically, 4.49 batches per second.
When using 4 vCPUs, the measured throughput is 7.81 batches per
second.

5 CONCLUSION
In this paper we presented our solution to the DEBS 2022 Grand
Challenge. The topic of the challenge revolved around financial

market data, which require continuous and timely monitoring of
price variations to detect patterns of interest and enable informed
decision-making. Our solution relies on Apache Kafka message
queues to ingest market data and Apache Flink for stream process-
ing. The built-in abstractions provided by Flink well supported us
in developing a solution to the challenge. As future work, we plan
to further optimize the performance of the proposed solution, also
by exploiting application elasticity to enable seamless scaling [4].
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