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ABSTRACT
Serverless computing, and in particular Function as a Service (FaaS),
has become an increasingly popular cloud programming model in
recent years. The serverless computing model offers an intuitive,
event-based interface for developing cloud-based applications, that
makes the writing and deployment of scalable microservices easier
and cost-effective. Existing orchestrators in serverless systems are
mainly designed for short-lived functions. Nevertheless, an increas-
ing number of applications are deployed as pipelines that comprise
a sequence of functions that execute in a specific order or pattern
and must meet a wide range of throughput and latency targets to be
practical. In this paper, we present AMESoS, our scalable and elastic
framework for latency-sensitive streaming pipelines. AMESoS (i)
enables developers to build predictable pipelines that meet their
latency demands, (ii) employs prediction to proactively estimate
the most appropriate number of active replicas needed for each
function in the pipeline, and (iii) dynamically scales the number of
replicas for each pipeline’s functions in the presence of overloads.
Our experimental results demonstrate the efficiency and benefits
of our approach over state of the art systems.
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1 INTRODUCTION
Serverless computing, and in particular Function as a Service (FaaS),
has become an increasingly popular cloud programming model in
recent years, fueled by the recent demand to host services on pro-
visioned cluster infrastructures and the paradigm shift towards
interconnected IoT applications, devices and platforms. The server-
less computing model offers an intuitive, event-based interface for
developing cloud-based applications, that abstracts all infrastruc-
ture handling and makes the writing and deployment of scalable
microservices easier and cost-effective. All major commercial cloud
service providers are now offering serverless computing platforms,
including AWS Lambda[1], Google Cloud Functions[16] and Azure
Functions[28], where they take care of code maintenance and exe-
cution so that developers can deploy new code faster and easier.

The recent advantages of edge computing technologies have
enabled a wide range of latency sensitive applications attributed to
the reduced latency and bandwidth savings that edge computing
provides. As a result, a number of applications (i.e., alerting in smart
buildings, emergency response, video analytics) that require real-
time data analysis and decision making in real-time, have emerged.
However, a typical edge cluster has considerably fewer resources
compared to cloud servers and may be capable of handling a small
amount of requests, yet it becomes inadequate when encountering
bursty requests. Addressing these issues is not a straightforward
process. For instance, approaches such as [31] and [35] are lim-
ited as they either propose application-specific solutions or do not
take the real-time streaming characteristics of the applications into
consideration.

We proposeAMESoS a scalable and elastic framework for latency-
sensitive streaming pipelines. AMESoS dynamically computes the
queueing delays at the serverless functions’ queues to determine
whether the pipeline will meet its latency target. By computing
the queueing delays at the individual queues, AMESoS can dynam-
ically explore the auto-scaling ability for each function and scale
up (or down) to adapt to bursty workload. AMESoS dynamically
determines an efficient pipeline configuration to meet the requested
timeliness target, without wasting excessive resources. To do that,
AMESoS (a) uses a profiling mechanism, (b) estimates the impact of
the queueing delays on the latency of the end-to-end pipeline, and
(c) utilizes a time-series forecasting mechanism that can estimate
the incoming requests in the near future and scale accordingly in
advance.

Our approach makes the following contributions:
(i) We propose a methodology and have developed system

components to support the execution of latency-sensitive
pipelines in serverless environments, at the edge.
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(ii) We use a prediction model to estimate the incoming invoca-
tion rates for each pipeline. Using this model we can proac-
tively determine the most appropriate number of active repli-
cas needed for each function in the pipeline to maximize the
probability that the latency constraint of the pipeline is met.

(iii) We present a scalable and elastic framework that dynamically
scales the number of replicas for each pipeline functions. In
the presence of overloads, our algorithm reacts dynamically
to changing demands to ensure that adequate replicas are
allocated to the pipelines to meet their latency constraints.
When the queuing delay leads to a violation of the deadline
constraint, our system will identify which function in the
pipeline is the bottleneck and dynamically increase the num-
ber of the function replicas and allocate them to nodes in
the cluster.

(iv) We provide detailed experimental results to illustrate the
benefit of AMESoS and that it achieves as much as 70% im-
provement in deadline misses compared to its competitors.

2 BACKGROUND
2.1 Serverless Computing
In recent years the trend of Serverless Computing or Function as a
Service (FaaS) has emerged as a popular computing model in the
cloud computing industry. Unlike traditional systems, serverless
computing offers an intuitive, event-based interface for develop-
ing cloud-based applications, in which, developers can deploy and
deliver services, where they are only responsible for the applica-
tion logic. While in traditional host solutions, it is typical to rent
some dedicated virtual or physical machines for a specified desired
amount of time, the Serverless model offers the ability to utilize
ephemeral containers as needed based on the workload. The Server-
less computing model has additional advantages including its lower
operational and deployment costs due to its unique pricing policy
(based on a pay-as-you-use model) where users do not explicitly
provision or configure virtual machines (VMs) or containers but
they only get charged based only on the number of resources con-
sumed by an application during its execution.

In addition to its appealing pricing model that leads to signifi-
cant cost savings, there are three more characteristics that make
the Serverless model beneficial for our setting. First, the Serverless
model allows for easier management compared to server-based ap-
proaches. There is no need to have dedicated system administrators
or custom-built automated tools to manage the existing infrastruc-
ture. Second, the Serverless computing model is superior in terms of
elasticity and scalability, by providing a seamless method for auto-
scaling without the need to know the internals of the underlying
technologies, using ephemeral containers with a life span equal to
the time required by the workload. The number of active instances
can be selected either by the user or can be adapted dynamically
according to the request rate. For example, during periods of high
load, the number of active instances can be adapted automatically
to compensate for the increased traffic. On the other side, during
extended periods of inactivity, the number of active instances can
decrease to zero (scale to zero) to keep the total execution cost
low. As a result, Serverless systems have smaller administration

overhead compared to typical infrastructures. Finally, the devel-
opers can choose from a wide variety of available programming
languages to develop their services. The lack of strict programming
rules and grammar allows us to deploy our generated intermedi-
ate representation functions easily without having to modify the
general architecture of the system.

Serverless systems can be deployed practically everywhere, from
cloud to edge clusters and from high-end computers to low-end
devices such as Raspberry Pi. Typically, functions are deployed
within Containers that run in a distributed fashion over Kuber-
netes [23] or some other Container orchestrator such as Docker
Swarm[12], Nomad[19] or Apache Mesos[4]. There are open-source
serverless projects such as OpenFaas[29], Apache OpenWhisk[5],
KNative[22] and Fission[13], and commercial ones such as Google
Cloud Functions[16] and Cloud Run, Amazon’s AWS Lambda[1],
Microsoft’s Azure Functions[28].

2.2 Pipelines
The ability to build and deploy Serverless Data Pipelines (or pipelines)
that comprise a sequence of functions that execute in a specific
order or pattern, has recently emerged. Consider, for example, an
AMBER Alert application that uses traffic cameras across a city
to search for specific individuals or moving vehicles [31]. Such
pipelines must often meet throughput, latency, deadline or cost
targets to be useful in practical settings. For example, in the AMBER
Alert application, the pipeline must be configured to meet strict
deadline constraints, while a pipeline that detects vehicles that
are banned from entering specific streets in a SmartCity setting
could be configured to be more cost-efficient. Although serverless
environments provide horizontal scalability for individual functions,
orchestrating the system to support such pipelines is a complex
process.

In the serverless data pipeline the data is being processed through
a directed acyclic graph (DAG) where each node represents an
operation (i.e., a serverless function) that will be applied to the data
and each edge shows the corresponding data flow. Nodes in the
pipeline are called Pipeline Nodes (or PNodes for short). Pnodes are
instantiated in VMs or containers and are possibly replicated to
meet workload demands.

The nodes represent a range of operations from simple filtering
to complex processing like ML-based classification algorithms. The
in-degree of each node denotes the number of edges that end up in
the node, while the out-degree denotes the number of edges that
originate from the node. A node with an in-degree greater than
one represents a Merge Node. During splits of the data flow, each
message is sent to all the out-degree edges of the node, while in a
Merge Node a function executes only when it receives all messages
from all its in-edges. A node with an out-degree zero is called a
sink and represents the end of the processing flow in that pipeline.
Typically a sink node either stores the results in some external
storage or these are returned to the user.

2.3 Problem Statement
Consider an edge cluster comprising K nodes that host several
serverless functions. A typical edge cluster has fewer resources com-
pared to cloud servers, but is capable of running reasonably complex
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operations (e.g., linear regressions, object detection). Pipelines are
triggered by external events (i.e., user requests or messages gener-
ated by streaming platforms). Each pipeline is represented by a DAG,
where the pipeline nodes PNodes denote the serverless functions
(possibly replicated) and the edges represent the corresponding
data flows among the functions.

The execution time of a pipeline depends on (1) the PNodes
invoked, (2) the dependencies among them, as well as (3) the other
pipelines concurrently executing in the system. Each pipeline is
characterized by its Deadline. The pipeline’s latency is defined as
the elapsed time from the issuing of the pipeline invocation to the
time that the sink operator externalizes the results.

Our goal is to exhibit low latency for both short-running and
long-running workflows. Under normal conditions, we expect that
the pipeline invocations will meet their deadlines, but under un-
predictable conditions of the streaming system data sources, this
is not always guaranteed as the system might experience sudden
bursts in the number of requests. In the case of unpredictable bursts,
the system may not be able to process them by their deadline. On
the other hand, when we experience a decrease in the volume of
messages although no deadlines will be missed we may end up
under-utilizing and wasting resources while paying extra costs.

Our goal is to design a system that dynamically adjusts (scales up
or down) the number of function replicas according to the current
request rate factoring in queuing delays. During overloads the
system should scale up the functions of each PNode accordingly, to
ensure a high percentile of requests meeting their deadline while in
under-load situations our system scales down the replicas in order
not to waste resources.

3 AMESOS ARCHITECTURE AND SYSTEM
MODEL

3.1 The AMESoS Architecture
AMESoS (shown in Figure 1) comprises three main components,
the Connector, the Pipeline Manager and the Scaler.

Connector: The Connector component is the linkage between
the data sources and the Pipeline Manager. We use one Connec-
tor per Pipeline Manager. Its purpose is to subscribe to an event
stream provided by a third-party system (such as Apache Kafka or
S3/Minio) and trigger the flow invocation for each received event.
The event payload is used as the initial message of the flow invo-
cation. For example, the event payload can be an ID of an object
residing in an S3 bucket. Moreover, the developer can override the
default Kafka connector and implement a custom connector that
subscribes to any event stream or webhook.

Pipeline Manager: The Pipeline Manager is the main compo-
nent of our system. It is in charge of managing the execution of
the pipeline and maintaining the corresponding metadata. It exe-
cutes the pipeline by continuously receiving the flow invocations
from the Connector and executing the set of invocations for each
PNode of the pipeline. For each flow invocation, it instantiates a
JSON file called DataFlow that maps the returned result from each
function with the corresponding function. The initial invocation
payload that is received from the Connector is mapped to a spe-
cial reserved 𝑘𝑒𝑦 called input. The Pipeline Manager instantiates
a set of PNodes as described in the pipeline configuration file. In

Figure 1: The AMESoS architecture.

Figure 2: Pipeline flow and Dataflow.

the pipeline configuration file, the user describes the arguments
that each function expects and the Pipeline Manager matches these
arguments with the corresponding keys from the DataFlow file (Fig.
2). Furthermore, the Pipeline Manager is responsible for computing
and storing performance and resource statistics that are used for
monitoring the pipeline flow. We present those in section 3.2.

Although it is possible for the Pipeline Manager to support the
execution of many pipelines in parallel we recommend different
Pipeline Managers to manage different types of pipelines.

Gateway: The Gateway is responsible for interacting with the
Serverless environment. This is done through the API that is pro-
vided by the Serverless platform. The Gateway uses the provided
API to deploy new functions, receive information about the de-
ployed ones, stop the execution of idle functions or even modify
their resource parameter CPU/Memory allocation. In addition to the
above, the Gateway also acts as a proxy to the functions; if multiple
function replicas are deployed it uses a Round-Robin scheduling
policy to load balance the function invocations among all actively
deployed functions replicas.

Scaler: The Scaler is in charge of dynamically deciding and trig-
gering in real-time the number of function replicas for each PNode.
This is done by exploiting the resource and performance statistics
provided by the Pipeline Manager. In section 4 we describe in detail
our scaling algorithm that calculates in real-time the appropriate
number of instances that need to be deployed for each function of
the Pipeline.

3.2 System Model
AMESoS supports the execution of pipelines in a serverless environ-
ment where computations are decomposed into small steps that fit
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Figure 3: Processing Graph Types

within serverless functions; these are arranged in sequence, branch
or parallel and can re-execute whenever triggered. The pipelines are
triggered via messages, in response to specific events (i.e., events
being generated from a Kafka[3] event source).

Pipeline: A Pipeline denotes a sequence of serverless function
invocations, typically triggered by a Message. The Pipeline is rep-
resented as a Directed Acyclic Graph (DAG), (shown in Figure 3),
where nodes correspond to serverless functions, named Pipeline
Nodes (or PNodes for short), and the edges in the DAG denote the
corresponding invocations. Each DAG has its own unique ID.

Each PNode can serve one function only and has its unique ID. Pn-
odes can be instantiated in VMs or containers and can be replicated
to deal with workload demands. The degree of replication depends
on configuration settings as well as latency and throughput criteria.
Each PNode maintains a pool of HTTP Connections to the server-
less function replicas. The connections are established through
the Gateway provided by the Serverless Provider, as the function
containers might not be accessible from outside the provider net-
work. The number of HTTP Connections is equal to the number of
function replicas. Furthermore, each PNode 𝑖 is characterized by
𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖 which indicates the processing progress in the Pipeline.
This value is used to estimate the remaining processing time. It can
be provided by the user during the initialization of the system, but
it can also be calculated periodically during the run-time by the
Pipeline Manager after a small monitoring period.

Our system supports high-volume workloads like data analyt-
ics pipelines with parallel tasks. We consider two types of DAG
pipelines, as shown in Figure 3, sequential and parallel. In a parallel
pipeline, the processing logic can branch into two or more separate
sequential flows, which can execute in parallel and upon their com-
pletion, the results either merge into a single flow or stay split. In
the sequential pipeline, each vertex has at most one input and one
output. The pipeline configuration is provided by the user in JSON
format. The execution of the pipeline is managed by the Pipeline
Manager.

Pipelines are triggered via events received through the Connector
component. AMESoS Pipeline Manager executes the pipeline by
subsequently triggering the execution of each PNode in the pipeline.
AMESoS handles the dependencies between PNodes. The Pipeline
Manager considers which PNodes need to execute next and passes
the data as well as the corresponding attributes to the corresponding
PNodes.

Pipeline Metrics: Each pipeline 𝑝 is associated with the follow-
ing parameters:

• 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑖𝑑𝑝 : The id of the pipeline.

• 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑝 : The time interval, starting at the receipt of the
invocation request, within which the entire pipeline should
complete.
• 𝑡𝑜𝑡𝑎𝑙𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑝 : The estimated execution time of the pipeline.
The initial 𝑡𝑜𝑡𝑎𝑙𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑝 can be given by the user or com-
puted based on previous executions and updated periodically
by the Pipeline Manager.

PNode Metrics: Each PNode 𝑖 is characterized by the following
parameters:

• 𝑝𝑛𝑜𝑑𝑒𝑖𝑑𝑖 : The id of the pnode.
• 𝜆𝑖 : The invocation request rate at PNode 𝑖 .
• 𝑙𝑎𝑥𝑖𝑡𝑦𝑖,90: The 90th percentile laxity value of the messages
that are invoking PNode 𝑖 . It is measured periodically within
a time window.
• 𝑎𝑣𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑇𝑖𝑚𝑒𝑖 : The average process time of PNode 𝑖 for
each function invocation. This is updated periodically.
• 𝑐𝑖 : This metric denotes the number of active function replicas
represented by the PNode. By default our system maintains
at least one replica of each function. The number of replicas
is determined dynamically by the Scaler.
• 𝜇𝑖 : The rate with which requests are processed at PNode 𝑖 .
• 𝑞𝑢𝑒𝑢𝑒𝑆𝑖𝑧𝑒𝑖 : The queue size of PNode 𝑖 .

Message Metrics: A Message encapsulates the event payload
for each function invocation. Each Message𝑚 is associated with
the following invocation parameters:

• 𝑡𝑖𝑚𝑒𝑇𝑜𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑚 : The remaining amount of time that the
pipeline must complete, before its deadline is violated. This
is initially set as deadline and it is updated during execution.
As the pipeline executes, if the 𝑡𝑖𝑚𝑒𝑇𝑜𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑝 becomes
negative this means that the invocation has missed its dead-
line and we considered that it expired.
• 𝑞𝑢𝑒𝑢𝑖𝑛𝑔𝐷𝑒𝑙𝑎𝑦𝑚,𝑖 : The time that each message remained in
PNode’s 𝑖 message queue.
• 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑇𝑖𝑚𝑒𝑚,𝑖 : The time it takes for PNode’s 𝑖 function to
process message𝑚.
• 𝑒𝑥𝑒𝑐𝑇𝑖𝑚𝑒𝑚,𝑖 : The time taken by the message to execute at
pnode 𝑖 , including queueing, calculated as:

𝑡𝑜𝑡𝑎𝑙𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒𝑚,𝑖 = 𝑞𝑢𝑒𝑢𝑖𝑛𝑔𝐷𝑒𝑙𝑎𝑦𝑚,𝑖 + 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑇𝑖𝑚𝑒𝑚,𝑖 (1)

• 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑚 : The estimated remaining execution time of each
message. This value is updated after each PNode execution.
As we describe in Section 3.1 each PNode is associated with a
𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖 value that indicates the percentage of the process-
ing in the pipeline so far. The initial 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑚 is equal to
𝑡𝑜𝑡𝑎𝑙𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑝 and after each PNode excecution is updated
as follows :

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑚 = (1.0 − 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖 ) · 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑚 (2)

• 𝑙𝑎𝑥𝑖𝑡𝑦𝑚 : The difference between the 𝑡𝑖𝑚𝑒𝑇𝑜𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑚 and
the 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑚 after each PNode execution. Negative values
indicate that the message will miss its deadline. We keep
track and update the laxity value of the pipeline after each
function execution.



AMESoS: A Scalable and Elastic Framework for Latency Sensitive Streaming Pipelines DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

4 OUR APPROACH
In this section, we describe our proposed solution for satisfying
the constraints of latency-sensitive pipelines. Our objective is to
provide a system that meets the following requirements: (i) the
urgency demands of each pipeline, expressed in terms of a latency
value, are met and (ii) we use a lightweight event-driven scaling
algorithm to adapt dynamically to meet the workload demands. To
meet the above requirements our approach makes the following
contributions:
• We propose a methodology and have developed system
components to support the execution of latency sensitive
pipelines in serverless edge clusters.
• We develop a dynamic algorithm to schedule the execution
of the pipeline invocations in the system. The schedule is
driven by the urgencies of the pipelines (represented via the
laxity value) factoring in queueing delays experienced by
the pipeline during execution.
• Weuse a predictionmodel to predict the incoming invocation
rates for each pipeline. Using this model we can proactively
determine the most appropriate number of active replicas
needed for each PNode to maximize the probability that the
latency constraint of the pipeline is satisfied.
• We present a scalable and elastic algorithm that dynamically
scales the number of replicas for each PNode. In the presence
of overloads, our algorithm reacts dynamically to changing
demand to ensure that adequate replicas are allocated to
the pipelines to meet their latency constraints. When the
queuing delays lead to a violation in the deadline constraint,
our system will identify which function in the pipeline is
the bottleneck and dynamically increase the number of the
function replicas and allocate them to nodes in the cluster.

4.1 Queuing Theoretic Model
Let 𝜆𝑖 denote the rate of arrival requests for PNode 𝑖 . Each PNode
𝑖 has 𝑐𝑖 number of function replicas and each replica is deployed
and runs in its own container. We assume that all containers are
homogeneous and have the same resource allocations. Under the
assumption that the containers are homogeneous, the function
replicas can all service requests at the same rate. Thus, we assume
that all replicas of PNode 𝑖 have the same 𝑎𝑣𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑇𝑖𝑚𝑒𝑖 . Con-
sequently, all function replicas will have the same service rate 𝜇𝑖 .
Thus, we can compute the average service rate of each PNode 𝜇𝑖 as:

𝜇𝑖 =
𝑐𝑖

𝑎𝑣𝑔𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒𝑖
(3)

In order to estimate the number of containers in real-time, we
assume that time is split into the same duration periods that we call
epochs. In each epoch we recalculate the 𝜆𝑖 and 𝑎𝑣𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑇𝑖𝑚𝑒𝑖
of all the invoked PNodes.

Assuming a Poisson distributionwith 𝜆𝑖 the rate for the incoming
requests and that services times are exponential, we can model this
system using an M/M/c queuing system with 𝑐𝑖 function replicas
for each PNode 𝑖 to process incoming requests in parallel. In a
streaming environment, similar to [35], we can assume that for
each epoch the arrival rate of the requests can be approximated via
a Poisson distribution, although this may not hold for the entire
system duration.

Queuing analysis of an M/M/c system is well known in the
literature where the most important metric that must be satisfied
is the stability of the utilization factor. With utilization factor 𝜌𝑖
we denote the percentage of time that the system is occupied with
jobs and for each PNode we calculated 𝜌𝑖 as:

𝜌𝑖 =
𝜆𝑖

𝜇𝑖
(4)

where 𝜆𝑖 denotes the arrival rate at the PNode and 𝜇𝑖 is the average
service rate of each PNode. In all queuing systems, the higher the
average utilization factor, the longer the wait time for each job in
the queue. Moreover, when the average utilization factor is higher
than 1 the queue size will tend to infinity and as a result, the average
waiting time will tend to infinity. As a rule o thumb, each 𝜌𝑖 should
not exceed 80%. We should note that these performance metrics
depend on multiple aspects such as (i) the scheduling decisions,
(ii) the arrival pattern of the incoming data, as well as (iii) the
distribution of the input values.

4.2 Estimating the laxity value
Given a user-defined deadline constraint specified for a message,
the Pipeline Manager dynamically computes whether the message
will be able to meet its deadline target. While the majority of the
existing systems assume linear pipelines with predictable invoca-
tions and latencies, we examine the applicability of a commonly
used scheduling metric, laxity, that depicts how close the estimated
execution time is to the user-defined deadline

Essentially, the laxity of a message is computed as the differ-
ence between the deadline and the estimated remaining execution
time of the message in the pipeline. More formally, 𝑙𝑎𝑥𝑖𝑡𝑦𝑚 =

𝑡𝑖𝑚𝑒𝑇𝑜𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑚 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑚 where 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑚 is the estimated
remaining execution time for the pipeline. The smaller the laxity
value is, the higher is the probability of a deadline miss. A negative
laxity value indicates that the message will not be able to execute
the pipeline on time.

We assume that the execution of the pipelines is repetitive but
aperiodic. Thus, the execution time of a pipeline 𝑡𝑜𝑡𝑎𝑙𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑝
can be estimated either via previous executions of the pipeline or by
using a small number of invocation runs during a profiling period
at the initialization of the pipeline. Note, that, the execution time of
a pipeline depends on multiple factors, including (i) the scheduling
policy, (ii) the arrival pattern of the incoming messages, as well as
(iii) the scaling decisions. For example under overload conditions at
the edge cluster or poor container scheduling due to orchestration
policies of the serverless environment, the average process time of
the pipeline will increase as shown in the experimental evaluation.
Thus, once an estimate is computed, we constantly monitor and
adjust this estimate during run-time. Our approach is to dynami-
cally compute the laxity value for the 90th percentile of messages
in each PNode inside an epoch; this will be subsequently used to
trigger our scaling algorithm and select the appropriate number of
replicas for each PNode. Our ultimate goal is to meet the pipelines’
deadline targets.

4.3 Holt’s prediction for incoming rates
If we select to scale according to the current 𝜆𝑖 we may underesti-
mate the number of containers that we need to instantiate and then
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we will have to wait for the next epoch to scale up again. As a result,
especially if the rate is high, we may end up accumulating a large
number of messages in the queues. Also, due to the known cold start
problem in serverless environments [9], the actual containers will
not start immediately after a scale up decision. Thus, it is crucial to
reduce the number of scale ups to avoid excessive time overhead
due to communication with the underlying container orchestrator
and the containers start-up period.

One approach is to predict the 𝜆𝑖 for the next epoch and to scale
up or down according to the demand. For this purpose, we use
Holt’s Model [10], a trend forecasting technique that applies a
double exponential smoothing process that captures the changing
trends in data and predicts a data value for a future period. Holt’s
Model works better compared to other techniques [24] such as
weighted KNN where a regression model is built by exploiting the
similarity of the features, or random forests where the predictions
are performed by taking the mean of outputs from each decision
tree, as these techniques cannot accurately capture the trend of
changes in the demand when there are frequent oscillations.

In our approach, we use the Holt’s model to estimate the incom-
ing demand based on a time-series of the incoming rates of the
previous 𝑁 epochs. Holt’s model is considered as an extension of
the moving average technique. It attempts to remove the inherent
lag associated to Moving Averages by placing more weight on re-
cent values. The first step to find the predicted incoming rate is
the calculation of the smoothed value of 𝑆𝜆𝑡

𝑖
. The computation pro-

cess takes into consideration the current 𝜆𝑡
𝑖
, the previous smoothed

value 𝑆𝜆𝑡−1
𝑖

, and the previous trend 𝑡𝑟𝑡−1
𝑖

(shown in Equation 5).
Equation (6) suggests that the estimation of the trend of 𝜆𝑡

𝑖
(whether it will increase or decrease and at which degree) is based
on previous smoothed values of 𝜆𝑡−1

𝑖
and helps better capture its

behaviour. The values of 𝛼 (7) and 𝛾 (8) are tunable parameters and
represent the data smoothing factor and the trend smoothing factor
respectively. These are chosen by sampling and checking the mean
square error for the different values to identify the best ones.

From this procedure, we estimate the future traffic and we use
this as input to the scaling algorithm to determine the appropriate
number of instances to adapt to future traffic.

𝑆𝜆𝑡
𝑖
= 𝑎 · 𝜆𝑡𝑖 + (1 − 𝑎) · (𝑆𝜆𝑡−1

𝑖
+ 𝑡𝑟𝑡−1𝑖 ) (5)

𝑡𝑟𝑡𝑖 = 𝛾 · (𝑆𝜆𝑡
𝑖
− 𝑆𝜆𝑡−1

𝑖
) + (1 − 𝛾) · 𝑡𝑟

𝑡−1
𝑖 (6)

𝛼 (0 ≤ 𝛼 ≤ 1) (7)
𝛾 (0 ≤ 𝛾 ≤ 1) (8)

4.4 Recomputing the Execution Times
In our approach, we dynamically compute each PNode’s 90th per-
centile laxity valuewhichwe subsequently use to determinewhether
a PNode is a bottleneck for a pipeline.

Serveless functions can be hosted on edge clusters that are lim-
ited in that regard and are more sustainable to throttling when
their resource capacity is reached. As mentioned by Lopez and
Spillner in [25] the increase in performance during a scale up is
proportional to the number of replicas and not linear. During our
run-time experiments, we confirmed this assumption by observing
a significant degradation of our deployed functions service rate as

our cluster reached its full resource capacity. In the experimental
evaluations, we observed that the average execution time of one
replica increases up to 30% as the machine that hosts the function
container reaches its full capacity. For these reasons to mitigate
that problem, we need to recalculate the average execution time as
the pipelines run and scale according to the updated demand.

4.5 AMESoS Scaling Algorithm
AMESoS scaling objective is two-fold: (i) determine the number of
replicas for each PNode function in an effort tominimize the number
of missed deadlines as the input rate varies dynamically, (ii) keep
the number of replicas low by not over-utilizing resources when
they are not needed. This procedure is performed by exploiting the
metrics collected by the Pipeline Manager. Algorithm 1 describes
our procedure which consists of 3 steps: (i) Rate prediction with the
Holt’s model, (ii) Replica calculation and (iii) Scaling Procedure.

In the first step, we use Holt’s Double Exponential Smoothing
Timeseries prediction method to predict the future 𝜆𝑖 value for the
next epoch as described in section 4.3.

In the second step, we estimate the number of replicas for each
PNode. By using queuing theory we calculate the total number of
containers 𝑐 ′

𝑖
that we need to adapt to the predicted traffic in the

next epoch by solving Eq. (4). 𝜇𝑖 is the service rate of each PNode
that we want to satisfy. By solving (4) we can find the 𝑐 ′

𝑖
that can

satisfy our predicted rate. 𝜌𝑖 is a tunable parameter that can affect
the number of predicted replicas. As 𝜌𝑖 tends to 1 the algorithm will
predict a lower number of replicas. In our experiments we choose
𝜌𝑖 ’s value to be 0.7 but this can be tuned based on the application
settings.

In the final step we decide and perform the actual scaling. We
obtain the 𝑐 ′

𝑖
from the Replica calculation step and check the 90th

of the messages with the lowest laxity in the current epoch. If
that laxity is below a user-specified threshold and the number of
the predicted replicas is higher than the current ones, then the
algorithm invokes a scale up request to the Gateway. Alternatively,
if the laxity is higher than a threshold and the predicted number of
replicas is lower than the current number, then a scale down request
is invoked. In the special cases when 𝑙𝑎𝑥𝑖𝑡𝑦𝑚 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and
𝑐 ′
𝑖
< 𝑐𝑖 or 𝑙𝑎𝑥𝑖𝑡𝑦𝑚 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and 𝑐 ′

𝑖
> 𝑐𝑖 then we do not perform

any action and wait until the next epoch. If the Algorithm results
in a scale request, once the scale completes, the Scaler informs the
Pipeline Manager for the change to update the size of the PNodes
connection pool accordingly.

In our experimental evaluation we demonstrate that our scal-
ing algorithm works well with a very large number of serverless
functions, making the use of the queueing model practical in edge
clusters.

5 AMESOS IMPLEMENTATION
We implemented all AMESoS components in Java 11 with a total of
around 5000 lines of code. All components can run as standalone
applications or can be packaged and delivered as Docker Images.

Container OrchestrationWe use Mesosphere Marathon [27]
just to start function containers on Apache Mesos cluster. The func-
tion containers are created using the OpenFaas Watchdog and Of-
Watchdog templates. The Watchdog contains an embedded HTTP
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Algorithm 1:AMESoS algorithm for finding function repli-
cas needed for serverless Graphs
Input: 𝑃𝑁𝑜𝑑𝑒 ′𝑠 current replicas 𝑐𝑖 , average execution time

𝑎𝑣𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑇𝑖𝑚𝑒𝑖 and incoming rate 𝜆
Scaling Procedure Scaler()

𝜆𝑝𝑟𝑒𝑑 ← 𝐻𝑜𝑙𝑡𝑠 (𝜆 𝑜 𝑓 𝑙𝑎𝑠𝑡 𝑁 𝑟𝑜𝑢𝑛𝑑𝑠)
foreach 𝑃𝑁𝑜𝑑𝑒 do

𝑐 ′
𝑖
← replicaCal(𝜆𝑝𝑟𝑒𝑑 ,𝑎𝑣𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑇𝑖𝑚𝑒𝑖 ,𝜌𝑖)

ScaleTo(𝑐 ′
𝑖
)

Replica Calculation
replicaCal(𝜆𝑝𝑟𝑒𝑑 ,𝑎𝑣𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑇𝑖𝑚𝑒𝑖 ,𝜌𝑖)

𝜇𝑖 ←
𝜆𝑝𝑟𝑒𝑑
𝜌𝑖

𝑐 ′
𝑖
← ⌈𝜇𝑖 ∗ 𝑎𝑣𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑇𝑖𝑚𝑒𝑖 ⌉

return 𝑐 ′
𝑖

Scaling Procedure scaleTo(𝑐 ′
𝑖
,𝑐𝑖 ,𝑙𝑎𝑥𝑖𝑡𝑦𝑖,90)

if 𝑙𝑎𝑥𝑖𝑡𝑦𝑖,90 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 & 𝑐 ′
𝑖
> 𝑐𝑖 then

/* Scale Up */
scaleFunction(𝑐 ′

𝑖
)

updateConnectionPool(𝑐 ′
𝑖
)

return
else if 𝑙𝑎𝑥𝑖𝑡𝑦𝑖,90 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 & 𝑐 ′

𝑖
< 𝑐𝑖 then

/* Scale Down */
scaleFunction(𝑐 ′

𝑖
)

updateConnectionPool(𝑐 ′
𝑖
)

return
else

/* No Scale Needed */
return

server that receives function invocations as HTTP requests, calls
the actual function code within the container and returns the func-
tion result with the same HTTP call. The deployed containers run
in Mesos Agents. Each container listens to port 8080 and Mesos
maps that port to a random port of the host Agent. Then by sending
an HTTP Post request to http://<agentIp>:<mappedPort> we can
invoke each function.

GatewayWe have developed a custom Gateway for talking to
Marathon using its provided API in order to deploy a new function
or scale up/down existing ones. Also it acts as a Proxy for function
invocations. It receives HTTP function invocations and propagates
them to the deployed function containers. Although a function
container can process more than one requests concurrently we
chose to limit the processing to a single request at a time due to
unexpected behaviour of the functions under heavy load. For this
reason the Gateway keeps track of the in-flight requests to the
deployed replicas and proxies the new requests only to available
containers. If there are no available containers at that time it returns
a 429 Too Many Requests HTTP Status code or it can block the
request and wait until some container becomes available.

Moreover, the Gateway listens to events from Marathon that
announce the deployment or termination of containers and imme-
diately updates its state. This way, it can begin to proxy traffic to
the newly added replicas before the entire scale up of the function
has completed.

MessageDeliveryWeuseApache Kafka as themessage delivery
system. Kafka is one of the most widely utilized Publish Subscribe
(pub/sub) systems available. Kafka has emerged as a state-of-the-art
pub/sub system due to its high performance and attractive features
of scalability and fault-tolerance. Linkedin uses Kafka to propagate
more than 7 trillion of messages per day across its micro-services.

In our system the Producers send messages to Kafka topics by
utilizing the Kafka’s Producer API. We use one topic per Pipeline
Flow, so all the messages for one specific Pipeline arrive at the same
topic. Each message that is produced is in JSON format and includes
the timestamp that is originally created by the Producer, a deadline
time and its payload that is the actual Pipeline invocation. Kafka
guarantees at least once processing schematics for the messages.
The Connector Component uses the Kafka Java Client to subscribe
to specified topics and then periodically polls the topic for new
messages and propagates them to the Pipeline Manager.

Pipeline Manager The Pipeline Manager receives the descrip-
tion of the Pipeline with a JSON Formatted file. It maintains a set of
𝑁𝑖 Threads for each PNode 𝑖 that are responsible for the HTTP com-
munication with the Gateway by utilizing the Gateway’s provided
API. The number of active HTTP connections per function should
be the same with the number of the deployed replicas. This is kept
synchronized between the Pipeline Manager and the Gateway by
periodically polling the Gateway at the endpoint \replicas and giv-
ing as parameter the name of the function. Periodically, the Pipeline
Manager reports back to Kafka the offsets of the messages that have
been successfully processed. In this way we achieve at-least-once
delivery semantic.

Monitoring system The Pipeline Manager collects and main-
tains a set of metrics as defined in section 3.1. Additionally, we use
Prometheus [30] and Grafana [17] to periodically get the metrics
from the manager and visualise them in a custom built Grafana
dashboard. These tools are used only for monitoring and visuali-
sation of the experiments and are not crucial components of the
system.

6 EXPERIMENTAL EVALUATION
6.1 Experimental Setup
Hardware. We conducted our experiments in our local small edge
cluster comprising 5 nodes. Each node has an Intel i7-7700 3.6GHz
processor with 4 physical cores and 8 threads and 16GB of RAM.
All of the nodes are interconnected with 1GBps Ethernet.

Software. All of the nodes run on Ubuntu 20.04 LTS. We run
ApacheMesos 1.9 [4] as our serverless platform andwe useMarathon
1.5 [27] in order to deploy Docker containers on top of Mesos.
Marathon is used only to start/stop the containers, no other fea-
tures of Marathon are utilized. With the current hardware, Mesos
reports in total 40 CPUs and 80GB of RAM available. In this cluster
we deployed our AMESoS system. We deployed Prometheus[30]
and Grafana [17] for collecting performance statistics during the
execution. In the experiments we also used a separate REDIS cluster
as our cache for keeping each PNode’s intermediate results.

Functions. We used OpenFaas Python templates in order to
create our functions.We organized our functions into three different
Pipelines as shown in Table 1 and Figure 3. The first pipeline creates
signed PDF documents and consists of three different functions:
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SHA256, which generates the digital signature of the text that will
be in the PDF by calculating its checksum with SHA256, Qrcode
which generates a QRCode image that contains the signed text
with the signature and finally, Pdf which combines the signed text
and the generated Qrcode in a single PDF file. Each function stores
its output in our local REDIS cluster and returns a unique UUID
of that object. Then this UUID is passed as argument to the next
function that polls the object from REDIS and the cycle continues
until the final function which returns the UUID of the final PDF.
This pipeline is expected to depict high load that could easily exceed
100 requests/sec.

The second Pipeline consists of three functions that perform AES
Encryption/Decryption of a message. The third Pipeline consist of
six functions that perform a series of Matrix Multiplication func-
tions. The latter one also splits the workflow into two branches and
then merges them back together. These pipelines differ in the num-
ber of encrypt/decrypt cycles and martix sizes for multiplication
which result in different execution times.

The average execution time for a single request in the Document
Creation Pipeline is around 50ms and we set the deadline for those
experiments to 500ms. For the Synthetic Workflow Pipeline the
average execution time is 700ms and the selected deadline was
1.5s. Finally for the Matrix Multiplications Pipeline the average
execution time is close to 1.3s with a deadline of 3.5s.

Rate. We used Microsoft’s Azure traces [[8]], [[39]] in order
to set the request inter-arrival time. We created a Custom Traffic
Generator that generates new Pipeline requests in time-windows
and in each time-window the Generator creates Pipeline requests
by following a Poisson Distribution with a given 𝜆. We used a pre-
defined seed for the Poisson Distribution for repeatability across
the experiments so in each experiment we had exactly the same
rate as shown in Fig. 4.

6.2 Evaluation Method
We have compared AMESoS with the following approaches: (a)
Request Per Second(RPS) Scaler. RPS is a scaling method that
is used in two popular serveless environments, OpenFaas [29] and
KNative [22] as their default auto-scaling method. RPS periodi-
cally obtains the incoming rate on each function and then calcu-
lates the desired number of replicas as follows: 𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑠 =

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑜𝑎𝑑
𝑡𝑎𝑟𝑔𝑒𝑡𝐿𝑜𝑎𝑑𝑃𝑒𝑟𝑅𝑒𝑝𝑙𝑖𝑐𝑎

. RPS requires from the user to explicitly set a
target number of requests per replica for each function by using a
benchmarking tool such as Hey [20] to stress a single replica of the
function. The benchmark might be affected by the current resource
allocation of the container, so the user has to perform several tests
with different allocations. We used Hey for benchmarking our func-
tions before the experiment to estimate the average requests per
replica for the RPS experiment. We developed an RPS Scaler which
calculates the rate in a period of 2.5 seconds.

(b) Deadline With Prediction (DwP) Scaler. For the DwP
Scaler we used the same replica calculation method as described
in 4.5 where we partition time into epochs with a period of 2.5
seconds and we monitor the total number of messages that missed
their deadline within each epoch. The Scaler makes scale up/down
decisions as follows: (i) if more than 10% of the messages lost their
deadline within the same window we trigger a Scale up based on

the computed number of replicas. (ii) While, if no or very few
invocations miss their deadline and our replica calculation method
computes the desired replicas to be fewer than the currently running
ones, then a scale down is triggered.

(c) LaSS. We used LaSS[35]’s scaling method provided in their
GitHub repository. We focused only on their scaling methodol-
ogy as the resource reclamation methods was not relevant to our
experiments.

AMESoS. We have implemented our scaling approach as we
described in section 4. We set our algorithm 1 to run every 2.5s.
For our Laxity based scaling method we chose the threshold to
be 200ms for the Document Creation, 1300s for Workflow #1 and
500ms for Workflow #2.

Experiment monitoring. In our experiments we use Grafana
to monitor the execution of the different methods.

6.3 Evaluation Results
We evaluate our approach using the following metrics: (i) Size of
Queues, for the duration of the experiment. (ii) Number of Replicas,
for the duration of the experiment. (iii) Deadline misses, the per-
centage of pipeline messages that miss their deadlines. In Figure 4
we show the input rates we used in the experiments.

6.3.1 Number of Replicas. In Figures 5, 6, 7 we report each PNode’s
replica size during runtime.

For all of our Workflows tested we observe that the deployed
replicas of each PNode have similar size for AMESoS and DwP
approaches. This is expected as AMESoS and DwP use the same
rate prediction algorithm. The small differences in replica deploy-
ments between them occur only during the traffic spikes and do
not last long. Compared to DwP we see that for all the experiments
AMESoS takes scaling decisions slightly faster. This is caused by
the different time that each algorithm triggers a scale up command.
This difference is because the DwP scales only when a portion of
the messages have missed their deadline while, AMESoS predicts
that, by exploiting the laxity metrics of the requests at each PNode,
it can decide to scale without having to wait for them to expire.
Because of this difference DwP decides to scale later than AMESoS
with an additional decision delay that is equal, in worst case, with
the whole Pipeline’s execution time.

In contrast, RPS deploys fewer replicas during incoming rate
spikes for the Document Creation Workflow. The reason for this
is because RPS only scales according to the current measured rate
unlike AMESoS and DwP that make a prediction for the future rate
for their scaling. This can be also seen in the other two Workflows
where RPS scales in steps to the needed replicas as rate keeps in-
creasing while the other approaches scale immediately for that rate
value with the help of Holt’s prediction. Finally, RPS scales one
function after the other in the Pipeline while the other approaches
scale the entire Pipeline’s functions simultaneously. This behaviour
can be explained since we consider the traffic only in the first node
of the pipeline and we assume that the rest of the nodes will even-
tually have the same input rate after the scale up of the first node,
while RPS monitors each PNode’s rate independently. Similarly to
RPS, LaSS calculates the replicas needed by exploiting the current
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Table 1: Experimental Pipelines

Workflow Description Number
of Functions Branches Average

Execution Time Deadline

Document Creation Generates a PDF and stores it in REDIS 4 No 50ms 500ms
Synthetic Workflow Performs AES Encryption/Decryption 3 No 700ms 1500ms

Matrix Multiplications Matrix Multiplication functions 6 Yes 1300ms 3500ms

(a) Document Creation (b) Synthetic Workflow (c) Matrix Multiplications

Figure 4: Pipeline input rates.

measured rate for each PNode. At the Document Creation and Syn-
thetic Workloads Fig.5, 6 LaSS uses more replicas than AMESoS
and does not scale down for prolonged periods.

6.3.2 Size of Queues. In Figures 8, 9, 10 we observe each PNode’s
queue size during the experiment. Even though all approaches
create queues we can see that for all the experiment our AMESoS
approach has lower queue sizes compared to DwP and RPS. For the
Document CreationWorkflow, AMESoS has lower queue size that is
up to 20% lower compared to bothDwP and RPS. Although, AMESoS
presented higher peaks compared to LaSS the queue draining time
for both was similarly fast. Due to the scrape interval of Prometheus,
that we use for monitoring and data gathering, in combination
with the fast incoming rate of the messages we cannot measure the
accurate queue size peak for these cases. For the SyntheticWorkflow,
AMESoS performed 30% better than DwP, 70% better than RPS and
50% better than LaSS in terms of queue sizes. Finally we observe
that in the last Workload, although AMESoS experienced a queue
peak that is up to 20% more than the other approaches, it was
removed faster and also it was the only queue that was created in
the entire experiment. For RPS and LaSS we see that when a queue
is created it is not cleared immediately like AMESoS and DwP but it
is transferred from one PNode to another and it requires additional
time to clear. This can be especially seen in Figure 9(c),(d).

6.3.3 Deadline misses. As we observe in Figure 11, AMESoS out-
performed RPS by 70% in the Deadline misses. This indicates that by
monitoring only the current input rate of the functions in a pipeline
is not enough to take scaling decisions for the entire pipeline and
thus a prediction for the near future traffic is needed.

Comparing AMESoS with DwP, even though the differences are
smaller, AMESoS has a 60% fewer deadline violations at the Matrix
Multiplication Workflow where the execution time of the Pipeline
is the highest. This occurs because by monitoring the laxity of the
messages as they get processed by the functions, AMESoS scales as

soon as it predicts that some messages might miss their deadlines.
Considering also that the functions do not scale immediately, the
sooner we schedule a scale up command the faster our system will
become stable. Without the laxity indication, the scaler would order
a scale up command only after some messages get expired. This
means that the scaling decision will be delayed at most as much
as the execution delay of the whole pipeline. Compared to LaSS
AMESoS experienced slightly fewer deadline misses for Document
Creation and Matrix Multiplication Workflows and presented con-
siderably better performance, 22% fewer deadline misses, in the
Synthetic Workflow.

In Fig 12 we look closely at the accumulative resources required
by AMESoS and LaSS during the three scenarios. We observe that
LaSS uses more replicas than AMESoS and does not scale down for
prolonged periods for the Document Creation and the Matrix Mul-
tiplication pipelines. Due to this behaviour AMESoS uses up to 28%
less resources. We observe that AMESoS uses 13% more resources
in the Synthetic Workload but results in 22% fewer deadline misses.

7 RELATEDWORK
Pipeline Workflows. The need for supporting data pipelines has
come up in a variety of edge cluster settings. For example, Apache
Storm[7] is a distributed realtime computation system and provides
reliable real-time processing on streams of data. Apache Spark[6] is
an open-source analytics engine for large-scale data processing by
providing an interface for programming clusters with implicit data
parallelism and fault tolerance which can be used for both batch
and stream pipelines processing. Apache Flink[2] is a distributed
processing engine for stateful computations over unbounded and
bounded data streams. EdgeWise[15] which is implemented on top
of Apache Storm is incorporating a congestion-aware scheduler and
a fixed-size worker pool into an edge friendly Streaming process
environment.
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(a) AMESoS (b) Deadline with Prediction (c) RPS (d) LaSS

Figure 5: Document Creation Replicas

(a) AMESoS (b) Deadline with Prediction (c) RPS (d) LaSS

Figure 6: Synthetic Workflow Replicas

(a) AMESoS (b) Deadline with Prediction (c) RPS (d) LaSS

Figure 7: Matrix Multiplications Replicas

(a) AMESoS (b) Deadline with Prediction (c) RPS (d) LaSS

Figure 8: Document Creation Queue sizes

GrandSLAm[21] estimates the completion time of requests that
propagate through a set of application stages implemented as in-
dividual microservices. It leverages this estimation to dynamically

batch and reorder requests at each microservice to meet the re-
spective target deadline. Magic-Pipe [11] which is a self-optimizing
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(a) AMESoS (b) Deadline with Prediction (c) RPS (d) LaSS

Figure 9: Synthetic Workflow Queue sizes

(a) AMESoS (b) Deadline with Prediction (c) RPS (d) LaSS

Figure 10: Matrix Multiplications Queue sizes

(a) Document Creation (b) Synthetic Workflow (c) Matrix Multiplications

Figure 11: Percentage of deadline misses in the different pipelines.

video analytic pipeline that leverages AI techniques to periodically
self optimize. They use State-Action-Reward-State-Action (SARSA)
Reinforcement Learning in order to perform some actions based
on the current state of the environment. This approach is lim-
ited to video analytics pipelines and needs re-training for different
pipelines. Although the aforementioned systems provide pipeline
processing they are not designed to meet the serverless environ-
ment characteristics. gg [14] is a framework that enables jobs to
be expressed as a pipeline of individually transient containers. It
deploys these containers in a serverless environment and takes care
of their instantiation and the flow of data across the containers.
Fifer[18] deals with over-provisioning resource utilization that oc-
curs in serverless environments during workload fluctuations. This
is done by efficiently bin packing jobs to fewer containers.

Scheduling and workflow elasticity. Lopez and Spillner in
[26] studied microservices scalability. They propose a replica count

determination method by exploiting a pre-calculated combinations
matrix of different number of replicas for each microservice in a
specific architecture with predictable behaviour under certain con-
ditions. Although their method is effective it requires for the system
administrators to acquire and maintain that set of combinations for
each architecture in advance. This is very limiting for serverless en-
vironments where the deployments can last for a very small amount
of time and thus it’s not efficient to test and pre-calculate the com-
bination matrix. The scheduler proposed in TetriSched [34] aims
to prevent tasks from being sent to a sub-optimal set of resources
as resources are being held by earlier jobs, but it limited as it only
supports per-operation targets, not an end-to-end pipeline latency
that we target in our approach. In our previous work [38], [37]
we have proposed scalable distributed top-k join queries in topic-
based pub/sub systems and looked at the problem of maximizing
determinism under latency constraints. In [32] they formulate the
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elasticity on heterogeneous resources as a Markov Decision Process
and solve this process with linear function approximation and tile
coding to efficiently compute the elasticity policies at run-time.

Figure 12: Comparison in resource allocation between AME-
SoS and LaSS for the three Pipelines

Serveless scheduling Recent research has been conducted in
the field of auto-scaling and elasticity of serverless environments
and its earlier form of microservices. Francisco Romero et. al in
Llama[31] present a framework for heterogeneous and serverless
auto-tuning video pipelines, which are represented as DAGs of
operations. By giving an end-to-end deadline Llama calculates the
latency target for each operation invocation and dynamically as-
signs configurations across heterogeneous hardware that best meet
the calculated per-invocation latency target. AMesos on the other
hand, is designed for latency sensitive streaming data and takes
into consideration and predicts the traffic bursts that may occur.
Wang et. al in LaSS[35], presents a model-driven approach for run-
ning latency-sensitive serverless computations on edge resources.
LaSS uses queuing-based methods to select an allocation for each
hosted function and auto-scales the allocated resources in response
to workload dynamics. It uses a fair-share allocation approach that
guarantees minimum allocated resources for each function. The
authors propose a resource reclamation method based on container
deflation to reallocate resources from over-provisioned functions
to under-provisioned ones. FaaSRank[36], is a scheduling service
for serverless platforms based on metrics gathered from servers
and deployed functions. FaaSRank uses Reinforcement learning and
and Neural Networks to learn scheduling policies. However, LaSS
FaaSRank are not configured for pipeline optimization. Serveless in
the wild[33] proposes a resource management policy that reduces
the number of function cold start, while spending fewer resources
by using observations gathered from the entire FaaS workload of
Azure Functions.

8 CONCLUSION
In this paper, we presented AMESoS, our scalable and elastic frame-
work that aims to meet the urgency demands on latency-sensitive
pipelines and a lightweight event-driven scaling algorithm that
adapts dynamically in the presence of overloads. We have imple-
mented AMESoS on our edge cluster and illustrate that it achieves
as much as 70% improvement in Deadline misses compared to state-
of-the-art systems.
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