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ABSTRACT
Data parallel processing is a key concept to increase the scalability
and elasticity in event streaming systems. Often data parallelism
is accomplished in a splitter-merger architecture where the split-
ter divides incoming streams into partitions and forwards them to
parallel operator instances. The splitter performance is a limiting
factor to the system throughput and the parallelization degree. This
work studies how to leverage novel methods of in-network com-
puting to accelerate the splitter functionality by implementing it as
an in-network function. While dedicated hardware for in-network
computing has a high potential to enhance the splitter performance,
in-network programming models like the P4 language are also
highly limited in their expressiveness to support corresponding
parallelization models. We propose P4 Splitter Switch (P4SS) which
supports overlapping and non-overlapping count-based windows
for multiple independent data streams and parallelizes them to a
dynamically configurable number of operator instances. We vali-
date in the context of a prototypical implementation our splitting
strategy and its scalability in terms of switch resource consumption.

CCS CONCEPTS
• Software and its engineering→ Publish-subscribe / event-
based architectures; • Networks→ Programmable networks;
In-network processing.
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1 INTRODUCTION
Today’s high-speed communication networks interconnect a grow-
ing number of data sources. Observed event rates are consequently
ever increasing. A study on managing financial data reports around
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18 billion notifications per day and an average of 700,000 per sec-
ond with a peak rate of more than 1 million events/sec [9]. Data
parallel processing is an important concept to enable improved
elasticity and increased scalability for handling the growing data
rate in distributed event-based systems such as Complex Event Pro-
cessing (CEP) [5]. With data parallelization, multiple functionally
identical operators are deployed in the system to perform the same
computational task e.g., pattern matching on a subset of the events,
called windows. Often the parallel operator execution is based on
the splitter-merger model [21, 23]. In this architecture, one impor-
tant limiting factor of the overall system performance is the splitter
as it is responsible for partitioning the incoming event streams and
load balancing the identified event partitions towards the operator
instances. The event partitioning operation might be window-based
[8] or key-based [11]. In the case of window-based operators, the
splitter defines the event partitions by applying windowing seman-
tics to determine the start and the end of the windows and delivers
them to a set of operators. Therefore, the splitter represents a bot-
tleneck as it determines the maximum achievable throughput at
which the splitter-merger architecture can process events. Even
with compute-intensive operators involving longer processing time,
the splitter remains the bottleneck since decreasing the service time
requires more operator instances. Hence, the splitter imposes an
upper bound for the system throughput.

In this paper, we aim at exploiting novel methods of in-network
computing [4] for supporting data stream partitioning and load-
balancing. We propose a network-centric approach by moving the
splitter function to new programmable switches [3] in order to
benefit from their performance. Due to the development of in-
network computing and Software-Defined Networking (SDN) [17],
programmable data planes and their corresponding programming
language P4 [2] allow the reconfiguration of switching devices to
deliver customizable in-network functions at high-speed, e.g., Intel
Tofino 3 delivers 25,6 Tbps throughput [13].

While in-network computing nodes offer the potential of higher
performance for the splitter function, programming the paralleliza-
tionmodels in such devices is challenging. The P4 language is limited
in its expressiveness and support for stateful processing. Moreover,
it is important for the splitter function to be adaptive to the dynamic
nature of parallel operator execution. Therefore, we propose P4SS
to address these challenges. We show methods to create multiple
parallelization models and support their dynamic updates for the
reconfiguration of window specifications or changing the number
of the operator instances. In summary, we make the following key
contributions. We explain how the splitter function can be executed
in the network while still complying both with the splitter-merger
model and the SDN principles. We describe how P4 abstractions can
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be leveraged to build an in-network splitter function supporting
distinct windowing semantics, we present the design of P4SS and
we give the algorithmic description of two windowing methods
(i) overlapping i.e., sliding and (ii) non-overlapping i.e., tumbling
count-based windows. Finally, we provide an evaluation of our
implementation using a virtual testbed.

The remainder of the paper is organized as follows. In Section 2,
we present the system model and the problem description. Then,
we explain the design of our solution in Section 3. Next, we provide
an evaluation of our implementation in Section 4. In Section 5, we
discuss the related works. In Section 6, we give the conclusion and
future work.

2 SYSTEM MODEL AND PROBLEM
DESCRIPTION

2.1 System Model

Data  
Consumers

Operator Instances

P4 Splitter

Data Sources 

Controller

Merger

Figure 1: P4-based Data Parallelization Framework.

Data parallel operator execution comprises three components,
the splitter, a dynamic set of operator instances and the merger
[23]. The splitter executes a parallelization model to split incoming
data streams and assigns them to dedicated operator instances. The
streaming system can dynamically adapt the parallelization degree
by allowing the operator execution environment to dynamically
add new operator instances.

In this paper, we assume a network-centric approach for data par-
allel operator execution. While operator instances are still executed
on traditional server nodes, the splitter is executed on the net-
work path by a dedicated network switching device. The process of
deploying a parallelization model requires to perform switch recon-
figurations that support the coexistence of multiple parallelization
models with corresponding window specification. Traditionally,
network switches are based on fixed-functions Application-Specific
Integrated Circuit (ASIC) with predefined behaviour according to
standard protocols. Introducing customized in-network functions
in such devices is not possible or would require highly specialized
application interfaces mostly known to the hardware vendor. How-
ever, programmable switches [13] allow their reconfiguration with
the P4 programming language. Then the deployed network func-
tion, when mapped to the P4 switch model, can leverage line-rate
performance characteristics very close to the traditional ASICs.

In our model (Figure 1), the splitter function is executed by a
P4 programmable switch. The P4 splitter is configured by an exter-
nal controller via the control plane interface. According to SDN,
the controller has a global view on the system. It can monitor the

dynamic workload of the operator instances and collect their opera-
tional status. Therefore, according to a feedback loop the controller
can adapt the parallelization degree by updating the configuration
of the window specification in P4SS when the workload increases
or an operator is overloaded or down. The resulting parallelization
model is pushed to the splitter which has the P4 program running.

A P4 program typically applies at the packet level. In our no-
tion, we assume that an event corresponds to a packet. The switch
receives multiple input data streams arriving from different data
sources in the form of event packets on dedicated ingress ports. The
basic switch model comprises a set of ingress ports, a programmable
match-action pipeline and a set of egress ports. The P4 program
starts by an ingress parsing stage of the packet headers. Then, an
ingress match-action pipeline composed of match-action tables
is executed. A match-action table is a lookup table populated by
the controller with match-action entries consisting of (i) a lookup
key on which the match is performed (ii) an action data which is
executed when there is a table lookup hit. The ingress pipeline is
ended by a deparser to reconstruct the packet header fields that
were potentially altered during the match-action process. At this
point, the event packet is either assigned to an egress port in the
case of unicast, or to a multicast group in the case of multicast. An
egress processing is then applied to the packet or packet replicas
through egress parsing, egress match-action pipeline then egress
deparsing. Finally, the packet exits the P4 switch and is routed to
the identified operator destinations.

2.2 Problem Description
The splitter divides incoming data streams according to a given
window specification [8, 26]. There are time-based, count-based
and marker-based windows [7]. The resulting windows can be
overlapping or non-overlapping. While splitting the data stream
into windows, the splitter assigns each window to an operator in-
stance. Therefore, the splitter plays the role of a load balancer. It is
important that the splitter provides guarantees of even load distri-
bution among the operator instances. Also, it needs to maintain a
per-stream per-window consistency so that for each independent
data stream all events within the same window are sent to the
same operator. With this property, we ensure the correctness of
the results of operators. The splitter must be adaptive to changes
in the system and to new configurations, e.g., instantiating a new
parallelization model with its corresponding window specification,
or scaling up or down the number of operator instances for a given
stream. The dynamic updates are important since it would allow
reconfiguring the splitter at run-time without requiring to reload a
new P4 program.

Implementing expressive windowing semantics requires the abil-
ity to keep a persistent or semi-persistent state within the splitting
function. While this is widely supported in general purpose pro-
gramming languages such as GO or Java, this is not the case with
programmable data planes and their programming language P4.
In such devices, the high-performance comes at the cost of losing
some programming capabilities. First, in-network computing nodes
have limited on-chip memory. Second, the hardware primitives are
very simple to ensure that the processing remains efficient and
within a bounded latency. For example, arithmetic operations such
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as multiplication, division, and floating points operations in general
are not supported. It is also not possible to have a loop in a P4
pipeline. While stateful processing is limited with programmable
data planes, it is still possible to a certain extent by the means of
stateful objects such as Registers and Counters. Unlike stateless ob-
jects which have their state reinitialized for each incoming packet,
stateful objects keep their state between packets.

3 P4SS DESIGN
In this section, we present the design of P4SS (pronounced pass),
we explain its data plane pipeline processing and we describe the
different windowing semantics it supports.

3.1 Design Decisions
In P4SS, each data stream has its associated parallelization model
installed in the switch. A generic parallelization model is defined
by a window specification with a window size 𝑛 and a window shift
𝛿 , in addition to the maximum number of operator instances which
are assigned to this particular stream. The P4SS program exposes
these parameters to the controller via the control plane interface,
e.g., gRPC-based P4Runtime API [25]. For a specific parallelization
model of a given stream, the controller adds at run-time the proper
match-action entries to instantiate the values of these parameters
in the action data. Therefore, an update to the windowing scheme
does not require recompiling a new P4 program. Since each event
is encapsulated in a packet whose header can be processed by the
P4 switch, we define the event header (see Listing 1) to include a
stream type e.g., weather or stock price, a sequence number and a
timestamp. Hence, by having the stream type retrieved from the
event packet and used as part of the lookup key, P4SS can maintain
independent parallelization models for each separate input stream.
In our current prototype of P4SS, we support tumbling (Algorithm
1) and sliding (Algorithm 2) count-based windows. For load bal-
ancing the identified windows among the operator instances, P4SS
uses a Round Robin (RR) mechanism. Note that other scheduling
techniques such as Weighted Round Robin (WRR) are also possible
with P4.

Listing 1: Event Header
typedef bit<16> type_t;
typedef bit<16> seq_num_t;
typedef bit<64> timestamp_t;
header event_hdr_t {

bit<16> type;
bit<16> seqNum;
bit<64> timestamp;

}

3.2 P4SS Data Plane Pipeline
Upon the reception of an event packet, the event type is extracted
from the event header then mapped to a stream ID through a lookup
table, where also the window size and the window shift are set in
the action data. Next in the pipeline, we retrieve the number of
operator instances assigned to this particular stream. Thereby, we
can change the window specification and the number of operators
at run-time and independently. Implementing the windowing se-
mantics requires stateful processing which is limited in P4 to the
use of registers. With registers we can keep the state beyond the

e11
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Figure 2: Count-based non-overlapping (scenario a) and over-
lapping (scenario b) Windows. Event Stream 1 has a window
specification with 𝑛 = 3, 𝛿 = 3 and 3 operator instances A, B,
C. Event Stream 2 has a window specification with 𝑛 = 3, 𝛿 = 1
and 4 operator instances A, B, C, D.

lifetime of a packet. We define three main register arrays where
the Stream ID is used as an index : (1) 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑟𝑒𝑔[𝑖] for main-
taining the event current position within the latest active window,
(2) 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝑟𝑒𝑔[𝑖] for keeping track of the current operator in-
stance receiving the events, and (3) 𝑜𝑣𝑒𝑟𝑙𝑎𝑝_𝑟𝑒𝑔[𝑖] is for the overlap
degree of how many windows are currently active in the case of
overlapping windows.

P4SS starts the processing at the initial state where all registers
and metadata values are set to zeros and the match-action tables
are pre-configured with a set of match-action entries added by the
controller via the control plane interface. For overlapping windows,
multicast groups are created through the Traffic Manager (TM)
API (this is outside of P4). The objective of P4SS is to determine
for each received event to which operator or set of operators it
must be sent. To resolve this decision, the main program (Figure
3) first retrieves the window type that will be applied. In the case
of tumbling windows (𝑛 ≤ 𝛿) (Figure 2.a), the event goes through
the unicast path in the P4 pipeline. An Operator ID is identified
then a lookup in the operators table allows to map an operator ID
to an Operator IP. Next, IP routing is resolved to reach the oper-
ator instance which can be located anywhere in the data center.
Note that this is a design choice to bring more flexibility into the
operator placement and network topology. By decoupling the oper-
ator instances from their location, P4SS does not require a specific
network topology. However, for simplification in a controlled envi-
ronment, the Operator ID can be mapped directly to an egress port,
where operator instances are servers directly connected to P4SS.
In the case of sliding windows (𝑛 > 𝛿) (Figure 2.b), based on the
values of the registers 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑟𝑒𝑔, 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝑟𝑒𝑔 and 𝑜𝑣𝑒𝑟𝑙𝑎𝑝_𝑟𝑒𝑔,
a multicast group ID is identified and the event goes through the
Packet Replication Engine (PRE) where more copies of the event
are created and sent each to the operator instances involved with
the currently active windows.

3.3 P4SS Windowing Semantics
Algorithm 1: For count-based tumbling windows, we maintain
the event position within a window in 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑟𝑒𝑔 register. The
current position gets incremented for each received event of the
stream until it reaches the window size. Then, the event position
gets re-initialized. Additionally, we keep the current operator identi-
fier within the 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝑟𝑒𝑔 register. As long as events are received
within an ongoing window, the operator ID 𝑖 remains the same and
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Figure 3: P4SS Data Plane Pipeline Design.

these events are forwarded to the same operator instance. When
the window size is reached, the operator ID is incremented in a way
that the new window will be sent to operator ID 𝑖 + 1. When the
maximum number of operator instances is reached, the operator ID
is re-initialized to zero. Thereby, P4SS assigns identified windows
in a RR fashion to the operator instances.

Algorithm 1 Count-based Tumbling Windows
Input: Stream ID, window size, window shift, maximum number of
operators.
Output: Operator ID.
register_read(position_reg[stream_id], position)
register_read(operator_reg[stream_id], operator_id)
if 𝑛 ≤ 𝛿 then

if 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 > 𝛿 − 1 then
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ← 0 ⊲ Start of new window
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝑖𝑑 ← 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝑖𝑑 + 1 ⊲ Next operator
if 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝑖𝑑 ≥𝑚𝑎𝑥_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠_𝑛𝑢𝑚 then

𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝑖𝑑 ← 0
end if

end if
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ← 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 1
register_write(position_reg[stream_id], position)
register_write(operator_reg[stream_id], operator_id)

end if

Algorithm 2:With count-based sliding windows, we have over-
lapping windows resulting in events being forwarded to multiple
operator instances at the same time with the guarantee for each
active window to contain consistently a number of events according
to its size. For example, with a window size 𝑛 = 3 with a shift 𝛿 = 1,
a new window is created for each received event and each active
window must end after 3 events (Figure 2.b). We define a parame-
ter of the maximum overlap equal to 𝑛 − 𝛿 and a current overlap
counter which is increased iteratively during a ramp up phase until
it reaches the maximum overlap degree. Consider if we have four
Operators A, B, C, D. At the start, the current overlap is zero and
the first packet is sent only to Operator A. With the second packet
the overlap is 1 and the packet is sent to Operators A and B. Then
the overlap is 2 and the third packet is sent to Operators A, B and
C. Next packet is sent to Operator B, C and D and so on. To express
this behaviour in P4, we maintain a truth table of the overlapping
windows to multicast groups mapping, and we populate it with
a set of entries to program all the possible combinations using as

a key the current overlap degree, the latest operator ID and the
stream ID. The multicast groups corresponding to each case must
be configured in the TM beforehand.

Algorithm 2 Count-based Sliding Windows
Input: Stream ID, window size, window shift, maximum number of
operators.
Output: Operator ID or Multicast group ID.
if 𝑛 > 𝛿 then

𝑚𝑎𝑥_𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ← 𝑛 − 𝛿
register_read(overlap_reg[stream_id], curr_overlap)
register_read(operator_reg[stream_id], operator_id)
overlapping_windows_to_mcast_grps_table(𝑠𝑡𝑟𝑒𝑎𝑚_𝑖𝑑 ,
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝑖𝑑, 𝑐𝑢𝑟𝑟_𝑜𝑣𝑒𝑟𝑙𝑎𝑝)
if 𝛿 == 1 then

𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝑖𝑑 ← 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝑖𝑑 + 1
if 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝑖𝑑 ≥𝑚𝑎𝑥_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠_𝑛𝑢𝑚 then

𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟_𝑖𝑑 ← 0
end if

end if
register_write(operator_reg[stream_id], operator_id)
if 𝑐𝑢𝑟𝑟_𝑜𝑣𝑒𝑟𝑙𝑎𝑝 <𝑚𝑎𝑥_𝑜𝑣𝑒𝑟𝑙𝑎𝑝 then

𝑐𝑢𝑟𝑟_𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ← 𝑐𝑢𝑟𝑟_𝑜𝑣𝑒𝑟𝑙𝑎𝑝 + 1
end if
if 𝑐𝑢𝑟𝑟_𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ≥𝑚𝑎𝑥_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠_𝑛𝑢𝑚 then

𝑐𝑢𝑟𝑟_𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ←𝑚𝑎𝑥_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠_𝑛𝑢𝑚 − 1
end if
register_write(overlap_reg[stream_id], curr_overlap)
register_write(operator_reg[stream_id], operator_id)

end if

4 EVALUATION
We developed a prototypical implementation of P4SS using the P416
language [6] and the behavioral model bmv2, a software switch as a
P4 target. We tested our prototype on Mininet [19], a python-based
network emulator for experimenting with SDN.Within Mininet, we
create a topology as depicted in Figure 4. The splitter is connected
to 𝑘 +𝑛 hosts : 𝑘 hosts used as data sources generating independent
event streams each with a different event type, and the other 𝑛
hosts represent the operator instances. Note that for each input
stream the packets contain a unique and continuously increasing
sequence number. Moreover, in our testing environment the packets
are delivered in a lossless and in-ordered fashion.
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As a preliminary evaluation of P4SS, we experiment with 3 data
sources, each with a different window specification and a specific
assignment of the operator instances. The goal is to evaluate the
key properties of our solution (i) correctness, (ii) adaptability and
(iii) even load distribution as explained in Section 2.2. First, we want
to validate the correctness of the splitting function. In our testing
scenario, Data Source 1 generates Stream A with a window specifi-
cation of 𝑛 = 3 and 𝛿 = 3 assigned to 3 operator instances 2, 3 and
4. Data Source 2 generates Stream B with 𝑛 = 5 and 𝛿 = 5 assigned
to 6 operator instances 1 to 6. Data Source 3 generates Stream C
with 𝑛 = 3 and 𝛿 = 1 assigned to the same 6 operator instances as
Stream B. We validate the correctness of the splitting behaviour by
verifying for each independent stream the sequence numbers in the
event header of the subset of events within each window received
at each operator. P4SS performs the event partitioning of the data
streams correctly and the windows are delivered to the operator
instances according to the window specification and the RR sched-
uling towards the configured operator instances is correct. Second,
P4SS adaptability to the dynamic configurations was proven to
work as we were able to install the parallelization models effec-
tively at run-time. Finally, as presented in Figure 5, P4SS delivers
an even load distribution among the operator instances both in the
case of non-overlapping (Stream A and Stream B) and overlapping
(Stream C) windows. Hence, through the software emulation of
P4SS we verified its key properties and essentially its feasibility as
a P4 function.

4.2 Resource Usage
While increasing the parallelization degree, one critical aspect is
the switch resource consumption in terms of the number of entries,
the registers and the multicast groups that need to be provisioned.
The relevant parameters which influence the resource consumption
are mainly the number of stream types, the number of operator
instances, the window type, i.e., overlapping or non-overlapping
windows, and the overlapping degree for the overlapping windows.
The size of the register arrays depends on the number of stream
types. For both overlapping and non-overlapping windows, the
window size does not affect the number of entries which is rather
dependent on the number of operator instances in the system. An
entry per operator is needed to map an operator ID to an egress port
and two more entries are required per stream (i) one for setting
the maximum number of operators and (ii) another for setting
the window specification of this particular stream. As presented
in Figure 6, P4SS provides linear scalability with respect to the
resource usage.
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Figure 6: Resource usage of three independent data streams
with different window specifications.

4.3 Performance Analysis
By mapping the splitter semantics to the P4 pipeline and having
it executed on hardware we can obtain the line-rate performance
of the switch and inherently benefit from the properties of the
match-action pipeline such as the guarantees of bounded latency
and very high-speed throughput. For our prototype, the software
emulation on bmv2 does not provide the time accuracy required
for fine-grained performance measurements but there are practical
instances of P4 switches [13] on which we plan to perform concrete
performance evaluation of our solution. For instance with Tofino
3, it is possible to achieve a throughput of up to 10 billion events
per second [12]. Although, we expect potential challenges for the
planned data plane implementation as we adapt our prototype to
Tofino and deal with its hardware constraints. To perform fine-
grained measurements at the accuracy level of the Tofino switch,
the P4sta framework represents an interesting tool for traffic load
generation and hardware timestamping [18].

5 RELATEDWORK
In-network load balancers using programmable data planes have
been proposed in Hula [15], Silkroad [24] and iLoad [10]. However,
these works focus on connection-oriented Internet Protocol (IP)
traffic and they are not suitable for window-based operators. In [27],
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the authors propose a dynamic key-based partitioning and load bal-
ancing solution for Distributed Stream Processing Systems (DSPS)
that is adaptive to the changing workload volume. They propose
an algorithm for the splitter to re-balance the workload by moving
selected keys from an overloaded operator to an underutilized one.
They recognize the splitter as being a bottleneck and leave it as
future work. SCTXPF [14] is a CEP rule-aware load balancer where
both the queries and the input data are dispatched so that the rele-
vant events are sent to the operators where the concerned rules are
being executed. In SCTXPF, the concept of windowing is not used
and the events are considered individually. The authors argue that
conventional load balancing with a RR scheduling does not work in
the context of CEP because of lack of stateful processing.We demon-
strated that with programmable data planes and the P4 language
we can support stateful windowing semantics. P4CEP [16] presents
the general idea of using programmable data planes for CEP. In
P4CEP, high-level CEP queries are translated to the P4 language
and executed by a P4 switch. To our knowledge, the particular
problem of having the splitter as an in-network function is not ad-
dressed in the literature yet. Proposed solutions for window-based
parallel operators either assume a multi-thread multi-core single
machine [22] or a cluster of distributed general-purpose machines
[1] but regardless of the system architecture, data parallelization
framework using in-network computing has not been investigated.
However, in [20], the authors examined less conventional parallel
hardware architectures using Graphics Processing Unit (GPU)s for
enabling high-performance publish/subscribe matching. Our work
demonstrates for the first time how to utilize programmable data
planes to support the splitter functionality.

6 CONCLUSION AND FUTUREWORK
In this work, we explored a network-centric approach to propose a
P4-based data parallelization framework supporting parallel opera-
tor execution using in-network computing and software-defined
networking. We focused on having the splitter as an in-network
function by leveraging programmable data planes and the P4 lan-
guage. Given a customizable window specification, our solution
P4SS parallelizes and load balances the incoming data streams to a
dynamically configurable set of operators. It supports multiple inde-
pendently configurable parallelization models for multiple stream
types using overlapping and non-overlapping count-based windows.
For future work, we plan to expand our splitter capabilities with ad-
ditional windowing semantics such as time-based andmarker-based
windows.Wewill adapt our implementation to hardware to perform
a performance evaluation of the splitter with more advanced sce-
narios. Moreover, we aim for an evaluation of the control overhead
to understand the time to change the splitter configuration.
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