
Predicate-Based Push-Pull Communication for Distributed CEP
Steven Purtzel

purtzesc@hu-berlin.de

Humboldt-Universität zu Berlin

Berlin, Germany

Samira Akili

akilsami@hu-berlin.de

Humboldt-Universität zu Berlin

Berlin, Germany

Matthias Weidlich

matthias.weidlich@hu-berlin.de

Humboldt-Universität zu Berlin

Berlin, Germany

ABSTRACT
Complex event processing (CEP) enables the detection of situations

of interest by evaluating queries over event streams. When applied

in a networked application, events generated by distributed nodes

are sent over the network to evaluate CEP queries. To reduce the

transmission of events, push-based communication that sends each

event immediately upon generation may be complemented with a

pull-based model that buffers events locally until they are requested

for query evaluation. Existing approaches that leverage push-pull

communication to reduce transmission costs for distributed CEP,

however, exploit solely temporal constraints imposed by a query.

As such, they are not applicable in scenarios, in which relevant

events may occur in each time window defined by a query.

In this paper, we propose predicate-based push-pull (PrePP) plans

for CEP queries to overcome the above limitations. Our idea is to

construct pull requests that enable fine-granular filtering at event

sources based on query predicates, thereby reducing event transmis-

sion. Since the construction of optimal PrePP plans is NP-hard, we

introduce a set of algorithms to speed up the plan construction by

up to five orders of magnitude compared to a brute-force approach,

while producing near-optimal results. In extensive experiments, we

demonstrate that PrePP plans reduce event transmission by up to

three orders of magnitude over baseline techniques.

CCS CONCEPTS
• Information systems→ Data streams.

KEYWORDS
Complex event processing, pattern detection, distributed streams

ACM Reference Format:
Steven Purtzel, Samira Akili, and Matthias Weidlich. 2022. Predicate-Based

Push-Pull Communication for Distributed CEP. In The 16th ACM Interna-

tional Conference on Distributed and Event-based Systems (DEBS ’22), June

27–30, 2022, Copenhagen, Denmark. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3524860.3539640

1 INTRODUCTION
Complex event processing (CEP) comprises methods that enable

the detection of situations of interest by continuously evaluating

queries over streams of events [11]. To this end, CEP queries specify

patterns of events through operators, time windows, and predicates

that constrain the attribute values of events within a pattern.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9308-9/22/06.

https://doi.org/10.1145/3524860.3539640

In networked systems, such as IoT infrastructures or sensor

networks, event streams are generated by distributed nodes. The

evaluation of queries then requires transmission of events over the

network. Traditional models are centralized, so that all events pro-

duced in the networkmust eventually be sent to a single node [2, 10].

Yet, this is rarely reasonable since, typically, only a small fraction of

the events is ultimately required to generate query matches. More-

over, as query evaluation scales exponentially in the number of

events to process [25], a centralized model has limited scalability.

Distributed CEP [8, 10], in turn, leverages the nodes in a network

for query evaluation, assembling the matches of a query from those

of sub-queries placed at the nodes [18]. Then, the communication

model offers an angle for optimization: Instead of pushing all events

required for query evaluation over the network immediately, pull-

based communication may be exploited [2, 10, 23]. Events may

be buffered locally at a node until their transmission is triggered

explicitly by a request received from another node in the network.

While pull-based communication implies a certain overhead in

terms of storage requirements and detection latency, it has the

potential to drastically reduce the event transmission.

To realize distributed CEP that relies on push-based and pull-

based communication, the following questions need to be answered:

(Q1) How to model pull requests, i.e., how to select the events that

shall be transmitted in response?

(Q2) When shall query evaluation adopt push-based communica-

tion and when shall events be pulled?

Existing techniques answer the above questions based on temporal

constraints and the rates with which events are generated [2, 10]:

A pull request fetches events of a particular type that fall into a

time window of the query. As such, the decision on pull-based com-

munication depends on the relation of the window size of a query

and the generation rates of the events. Hence, these techniques are

not applicable in scenarios with small time windows or high event

rates. Here, pull-based communication may degenerate and fetch

all events and, despite the induced overhead, does not reduce event

transmission compared to a push-based model.

In this paper, we argue for a more expressive model for push-pull-

based communication in distributed CEP to enable optimization

in a wider range of application scenarios. Specifically, we exploit

the query semantics in terms of the predicates that constrain the

attribute values of events to achieve fine-granular selection of the

events to send in response to a pull request. To realize this idea, we

make the following contributions:

◦ We propose PrePP plans for the distributed evaluation of CEP

queries, which include pull requests based on query predicates.

◦ We introduce a cost model for PrePP plans and show NP-

hardness of the problem of computing an optimal plan.

◦ We present a sampling algorithm and caching strategies for

the efficient construction of near-optimal PrePP plans.

https://doi.org/10.1145/3524860.3539640
https://doi.org/10.1145/3524860.3539640

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Steven Purtzel, Samira Akili, and Matthias Weidlich

A

B C

2 3

1

all push

costs: 4000 events / min

A

B C

2 3

1

window-based push-pull

costs: 2002 events / min

B C B C

10
A B,C

21.0
A

A

B C

2 3

1

predicate-based push-pull

BAB CBC

10
A B 2 C 3

{A} {B}

{A} {B}

costs: 503 events / min

Legend

pull edge
push edge

3

C

node is
source of
event type

1
node

evaluating q

SEQ(C c, B b, A a)

Query q:

WHERE PAB(a, b) ∧ PBC(b,c)
WITHIN 30s

N = {1, 2, 3}

r(A) = 1/min = 0.5/30s
Event rates:

r(B) = 2000/min = 1000/30s
r(C) = 2000/min = 1000/30s

Selectivities:
σ(B,AB) = 0.1 %
σ(C,BC) = 50 %

PAB(a,b): a.x < b.y
PBC(b,c): b.y = c.y

p1: p2: p3:

Figure 1: Event network with nodes 1-3, producing events of types A, B, and C, and three evaluation plans p1-p3 for query q.

We evaluated our approach with synthetic and real-world data. Our

results highlight that PrePP plans reduce event transmission up to

three orders of magnitude compared to baseline techniques.

Below, we motivate predicate-based push-pull communication

(§2) and present a formal model for CEP (§3). We then define the

problem of efficient query evaluation in networks (§4), introduce

PrePP plans to address it (§5), and elaborate on the efficient con-

struction of these plans (§6). Finally, we present our experimental

evaluation (§7), review related work (§8), and conclude (§9).

2 MOTIVATING EXAMPLE
We consider networks of event producing nodes. One of the nodes

is responsible for evaluating a query over the events generated by

the network, such as a control station in a smart grid that monitors

the energy consumption of smart households [14]. To motivate our

approach, we present an abstract view of such a network in Fig. 1.

Node 1 generates events of type A that occur at a low rate, i.e.,

once per minute. In contrast, events of types B and C are frequent,

i.e., 2000 occurrences per minute, and generated at nodes 2 and 3,

respectively. The given query q describes a pattern as a sequence of

a C event, a B event, and an A event that occur within 30 seconds.

Moreover, for events to form a match, the predicates PAB , defined
over A and B events, and PBC , defined over B and C events, need

to hold. Node 1 shall be responsible for generating matches of q.
For traditional push-based communication, as illustrated in plan

p1, all events need to be sent over the network and processed at

node 1. This results in transmission costs of 4000 events per minute.

Window-based push-pull communication [2, 10], as in plan p2,

exploits the difference in the event rates to reduce event trans-

mission. Having the lowest rate, event type A is pushed. Node 1

evaluates the query q and is the only source ofA events so that noA
events are sent over the network. For eachA event, a pull request is

sent to nodes 2 and 3 to fetch events of types B and C . In response,

B and C events are sent to node 1 if they can be part of a match of

q based on the constraints induced by the time window, i.e., if they

occurred up to 30 seconds before the time indicated by the pull

request. On average, 1000 events of types B and C satisfy the time

window constraint per minute. Hence, with two pull requests, we

arrive at a transmission cost of 2002 events per minute, a reduction

of 50% compared to the push-based plan.

Yet, relying solely on temporal constraints for pulling events

ignores the optimization potential induced by the query’s predicates.

They can be used to filter events before sending them in response to

pull requests. This is exemplified in the predicate-based push-pull

plan p3. Again, A events are pushed. For each A event, B events

are then pulled from node 2. However, the pull request no longer

contains solely the timestamp of the A event, but also its attribute

values required to evaluate predicate PAB . In response, only those

B events are sent that satisfy both, the temporal constraint and the

predicate PAB . With the ratio of B events that satisfy PAB , i.e., the
selectivity σ(B,AB), assuming a value of 0.1%, from 1000 B events

in the time window, only one satisfies the predicate PAB . Hence,
a single event is sent in response to the pull request. Upon the

arrival of a B event at node 2, C events are pulled from node 3.

Here, the predicate PBC is used to reduce the events in the pull

response. With the selectivity of PBC being 50%, from 1000C events

in the time window, 500 events are sent as a response. Hence, the

transmission cost of plan p3 is 503 events per minute; a further

reduction by 75% compared to the window-based push-pull plan.

3 BACKGROUND
We define a network model and query language, as follows.

3.1 Network Model
Event Types. Let E = {ϵ1, . . . , ϵn } be the universe of event types.
An instantiation of an event type is called event, which represents an

instantaneous change of state. An event type defines a schema for

a set of events of similar semantics. For an event e , we write e .t and
e .type to denote its occurrence time and event type, respectively.

Event Network. We consider an event network Γ = (N , f , r),
in which the nodes N serve as event sources and produce subsets of

the event types in E. A function f : E → 2
N

defines for an event

type ϵ , the nodes that are capable of generating ϵ events, i.e., the
sources of ϵ . A function r : E → R assigns to an event type the

(local) rate with which the events are generated per source. The

global rate R : E → R assigns to an event type the total number of

events in the network per time unit, given as R(ϵ) 7→ | f (ϵ)| · r (ϵ).

Example 1. In Fig. 1, the event network comprises nodes N =
{1, 2, 3} with f (A) = {1}, f (B) = {2}, f (C) = {3} and the rates

being r (A) = 1 and r (B) = r (C) = 2000. As each event type is

generated by one source, local and global rates are equivalent.

We consider networks with a clique structure, i.e. events can

directly be exchanged between each pair of nodes.

Global and local trace. A local trace denotes the timely or-

dered infinite sequence of events produced by any node in an event

network. Interleaving local traces of all nodes in the network, con-

ceptually, yields a global trace that is never materialized. We assume

that timestamps are sufficiently fine-grained, such that the global

trace is totally ordered.

Predicate-Based Push-Pull Communication for Distributed CEP DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

3.2 Query Language
We employ a common language model [4, 11]: A query consists of

operators, a set of predicates, and a time window. Operators specify

the types and order of events in query matches, which are further

constrained by the query predicates and the time window. We focus

on queries, for which each predicate is defined over at most two

event types and for which the predicates are connected by logical

conjunction (see Fig. 1). Predicates defined over single event types

are directly incorporated in the characterization of event types.

Syntax. A query q = (O, β) is defined as an ordered tree of oper-

ators, annotated with predicates and a time window. The operators

O are the vertices of the query tree with the leafs being primitive op-

erators Op ⊆ O that refer to event types. We write o.sem to denote

the semantic type of an operator. The semantic type of a primitive

operator op ∈ Op is given by op .sem ∈ E. A composite operator

oc ∈ Oc = O \Op has a semantic type oc .sem ∈ {SEQ,AND,OR}.

The structure of query q is given by the function β : Oc ↛ Ok
,

with k ∈ N, k > 1, which assigns a sequence of child operators to a

composite operator. The set of event types over which q is defined

is given as E(q) =
⋃
op ∈Op op .sem. We further assume that each

event type is referenced by at most one primitive operator.

Semantics.While each source in the event network Γ generates

a local trace of events, the semantics of a query is defined over the

global trace. As such, a match of a query is given by a sequence of

events of the global trace generated in Γ. The set of matches of a

query q = (O, β) is inductively defined over the operator tree:

◦ A primitive operator op ∈ Op ⊆ O creates a match for each

occurrence of an event of type op .sem.

◦ An AND operator constructs a match for any interleaving

of matches of all its child operators.

◦ A SEQ operator constructs a match for the concatenation of

matches of its child operators in the specified order.

◦ An OR operator constructs a match for each match of one

of its child operators.

However, a match is only constructed for events that satisfy the

predicates and time window specified by the query. We do not

impose any restrictions on the number of times an event can par-

ticipate in matches, which corresponds to the most challenging

evaluation scenario, also known as skip-till-any-match [1].

Rates. Given an event network Γ = (N , f , r) the evaluation of a

query q = (O, β) can be captured by the rate with which matches

ofq are generated. For a primitive operatorsop ∈ Op witho.sem = ϵ ,
this rate is given by R(ϵ).

We define the selectivity σϵi ,ϵj as the aggregated selectivity of

predicates of q defined over the event types ϵi , ϵj ∈ E(q). For a com-

posite operator oc ⊆ Oc , letO
c
p ∈ Op denote the subset of primitive

operators that are leafs of the sub-tree in the query tree of q having

oc as root. The selectivity σ (oc) of the composite operator oc is

given by

∏
x ∈{(ϵi ,ϵj) |ϵi ,ϵj ∈Oc

p∧ϵi,ϵj } σx . For a composite operator

oc ∈ Oc with selectivity σ (oc), the rate is inductively defined:

R(oc) 7→


σ (oc) · |β(oc)| ·

∏
o′∈β (oc) R(o

′) if oc .sem = AND,

σ (oc) ·
∏

o′∈β (oc) R(o
′) if oc .sem = SEQ ,

σ (oc) ·
∑
o′∈β (oc) R(o

′) if oc .sem = OR.

Based thereon, the rate R(q) and the selectivity σ (q) of a query q are
defined as the rate and selectivity of its root operator, respectively.

Table 1: Overview of notations for networks and queries.

Notation Explanation

ϵ Event type

E = {ϵ1, . . . , ϵn } Universe of event types

Γ = (N , f , r) Event network: nodesN , sources of event types f : E → 2
N
,

rates r : E → R
r (ϵ), R(ϵ) Local and global rate of an event type ϵ
q = p = (O, β) Query q (or projection p) with composite and primitive oper-

ators O = Oc ∪Op and their tree structure β : Oc ↛ Ok

E(q), E(p) Event types of a query q and a projection p
Πq All possible projections of query q
π (q, X) Projection of q restricted to the event types in X ⊆ E(q)
σϵi ,ϵj Selectivity of predicates defined over event types ϵi , ϵj
σ (o), σ (q), σ (p) Selectivity of an operator, a query, or a projection

σ (ϵ, π (q, E(q)′) Selectivity of the projection π (q, E(q)′)) for events of type ϵ

Query Projection. Based on [3], we use the notion of a pro-

jection p = (O, β) of a query q = (O, β), which is itself a query

that is restricted to a subset of the event types referenced in q, i.e.,
E(p) ⊆ E(q). Moreover, the projection p of q inherits the predicates

of q that are defined over E(p) as well as q’s time window.

The set of all possible projections of a queryq isΠq . The function

π : q×2
E(q) → Πq returns for a query q and a subset E(q)′ ⊆ E(q)

of its event types, the projection π (q, E(q)′) of q that is restricted

to E(q)′. An instantiation of function π can be found in [3].

Example 2. For our running example in Fig. 1, π (q, {A,C}) yields
the projection SEQ(C,A), which has no predicates and the same time

window as query q, i.e., 30 seconds.

We further consider the selectivity of a projection for an event

type. Let q be a query defined over the event types E(q). Then,
by σ (ϵ,π (q, E(q)′)), we denote the selectivity of the projection

π (q, E(q)′) for the event type ϵ ∈ E.

Table 1 provides an overview of our notions and notations.

4 PROBLEM STATEMENT
Next, we formalize the problem of efficient query evaluation in

event networks. Let q be a CEP query to be evaluated in an event

network Γ = (N , f , r). In this context, an evaluation plan is a func-

tion ξ that takes a query and network as input and returns the set

of matches of q at one of the nodes of the network Γ. To this end, an
evaluation plan evaluates (sub-)queries at the nodes of the network

and exchanges their matches to eventually assemble the matches of

query q. For instance, a simple centralized, push-based evaluation

plan would choose a distinguished node to evaluate the query q,
while all other nodes that generate events of the types referenced

in q send the events to this node.

The quality of an evaluation plan is determined by a cost c(ξ) ∈ R,
which describes the number of messages per time unit that need to

be exchanged for producing all matches of q. This cost is based on

the rates with which events are produced in the network.

Example 3. Consider plan p1 in Fig. 1 for the evaluation of q =
SEQ(C,B,A) at node 1. The cost of the plan is r (B) + r (C) = 4000.

We summarize the problem addressed in this work, as follows.

Problem 1 (EfficientQuery Evaluation in EventNetworks).

Let q be a query to be evaluated in the event network Γ = (N , f , r).
The problem of Efficient Query Evaluation in Event Networks is to

construct an evaluation plan ξ that minimizes c(ξ).

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Steven Purtzel, Samira Akili, and Matthias Weidlich

5 PREDICATE-BASED PUSH-PULL PLANS
To address the above problem of efficient query evaluation in event

networks, we propose predicate-based push-pull (PrePP) plans. Be-

low, we first present a formal model for PrePP plans (§5.1), elaborate

on the execution of such a plan (§5.2), and characterize its correct-

ness (§5.3). Then, we turn to the efficiency of PrePP plans. Based

on a cost model (§5.4), we elaborate on the problem of constructing

an optimal PrePP plan for query evaluation (§5.5).

5.1 PrePP Model
Our model leverages the predicates of a query defining the events

to be considered in a match. That is, pull requests are enriched with

some payload of events in order to enable predicate-based filtering

at event sources. To realize this idea, we introduce the notion of a

pull set, which captures the events that shall be sent in pull requests.

Example 4. In the second step of plan p3 in Fig. 1, only the B events

that satisfy predicate PAB are pulled. To enable the evaluation of this

predicate at the source of B, i.e., node 2, the pull set {A} is used, i.e.,
A events that are required to check PAB are sent in pull requests.

Having introduced the intuition of pull sets, we are ready to

define the atomic building block of our model. To evaluate a query,

nodes in the network need to acquire all relevant events that are

not produced by the node itself, by either pulling them proactively

or by having them pushed from their sources. We generalize the

communication required for query evaluation with the notion of an

acquisition step. It defines which types of events need to be acquired

by a node for query evaluation, and potentially includes a pull set

that can be used for filtering, if events are pulled instead of pushed.

Definition 1 (Acqisition Step). Given a query q, an acquisi-

tion step s = (Ψs , ρs) ∈ Σ = 2
E(q)×2

E(q)
is a tuple with Ψs denoting

the pull set used to pull events of the event types in ρs .

An empty pull set of a step s = (Ψs , ρs), i.e., Ψs = ∅, denotes that

events of the types in ρs are pushed, i.e., sent upon their generation.

A Predicate-based Push-Pull (PrePP) plan for a query q evaluated

in the network Γ = (N , f , r) specifies the node n ∈ N responsible

for generating matches of q, as well as the order, in which events

in E(q) are acquired. As such, a PrePP plan is defined as follows:

Definition 2 (PrePP Plan). Given a query q and an event net-

work Γ = (N , f , r), a PrePP plan p̂ = (p̂node , p̂steps) is a tuple with
p̂node ∈ N being the node generating matches of q, and p̂steps =
⟨s1, s2, . . . , sn⟩ ∈ Σ∗ being a sequence of acquisition steps.

Example 5. The PrePP plan p3 = (p̂node , p̂steps) in Fig. 1 is given

by p̂node = 1 and p̂steps = ⟨(∅, {A}), ({A}, {B}), ({B}, {C})⟩. The
first step (∅, {A}) indicates that A events are pushed. In the second

step, ({A}, {B}), events of type A are used to pull events of type B.

Below, we need some auxiliary notion for the types of events

that are available already when conducting an acquisition step. Let

p̂steps = ⟨s1, s2, . . . , sn⟩ be the acquisition steps of a PrePP plan for

a query q. Then, A : Σ → 2
E(q)

assigns all event types acquired in

earlier steps to an acquisition step sj , 1 ≤ j ≤ n, of p̂steps :

A(sj) 7→
⋃

1≤k<j, with
p̂steps=⟨s1=(Ψ1,ρ1),s2=(Ψ2,ρ2), ...,sn=(Ψn,ρn)⟩

ρk .

Table 2: Overview of notations for PrePP model.

Notation Explanation

Ψs Pull set

ρs Events to pull

s = (Ψs , ρs) Acquisition step with pull set Ψs and event types to pull ρs
p̂ = (p̂node , p̂steps) PrePP plan: node p̂node executes acquisition steps p̂steps
A(s) Set of event types already acquired in step s

Example 6. For the acquisition step s3 = ({B}, {C}) of the plan
p3 in Fig. 1, the set of available event types is A(s3) = {A,B}.

5.2 PrePP Plan Execution
We now explain the evaluation of a query q with a PrePP plan

p̂ = (p̂node , p̂steps) in the network Γ = (N , f , r).
Input Streams. Each node in N processes two input streams:

the input event stream, which comprises events required to generate

matches of the query, and the input request stream, which contains

pull requests. As p̂node is responsible for generating matches of q,
its input event stream contains locally generated events as well as

the events sent by other nodes in the network in response to pull

requests. Note that events in the input event stream of p̂node may

need to be ordered by their timestamps. The input event stream of

all other nodes in N \ {p̂node } corresponds to their local trace.

PartialMatch-based Query Evaluation. To generate matches

of query q, node p̂node employs an evaluation algorithm that pro-

cesses the input event stream to build partial matches that may

eventually become complete matches of q. While we abstract from

the actual evaluation algorithm used by p̂node , it must be capable

of processing events out of order.

The sources of events that are pulled during query evaluation

handle pull requests as follows: Let ϵ be an event type that is pulled

using the pull set Ψ. To enable predicate-based filtering, matches of

the projection p = π (q,Ψ ∪ {ϵ}) are generated based on the events

received in pull requests and the locally generated ϵ events. We

denote a partial match of p comprising only events of the types in

Ψ as an active pull request.

Buffers. For each event type ϵ that is pulled, the respective

sources maintain a buffer comprising locally generated events of

type ϵ as well as the active pull requests for ϵ . Moreover, p̂node
maintains a buffer containing the set of partial matches generated

during the evaluation of query q.
Based thereon, we characterize the query evaluation at any net-

work node using two functions, step and answer :

step : e,B 7→ B′,M,R,E

answer : r ,B 7→ B′,E

Step. The function step takes as input an event e of the input
event stream of node n as well as the node’s current buffer state B.
It returns a new buffer state B′

, a set of complete matchesM of the

query, a set of pull requests R, and events to be sent E.
For event e , let there by an acquisition step si = (Ψi , ρi) in the

PrePP plan, such that e .type ∈ ρi . If the step function is evaluated

at a node n ∈ N \ {p̂node } and Ψi = ∅, e is pushed to p̂node .
Otherwise, i.e., Ψi , ∅, e is added to the buffer of node n. If the
step function is evaluated at p̂node , e is processed by the query

evaluation algorithm, which may create new partial matches. If

a new partial match consisting of events of all types in A(si) is

Predicate-Based Push-Pull Communication for Distributed CEP DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

D,E
0 1 2 32

D2

PrePP Plan p:

i.

APRs
D1

D2

D3

D4

D5

D6

D7

D8

D Buffer

...

iv.

iii.i.

A0 B1

B3

B3

PM Construction1

ii.

B3

iii.

D

2

APRs
C1

C2

C3

C4

C5

C6

C7

C8

C9

C Buffer

...

3

iv.

31

Query q:

Network:
Event

SEQ(C, D, AND(A, B, E))

E C

PM Construction1

ii.

2 33i. Receive events

ii. Extend partial
matches

Send pull
requests

iii.

Filter locally
buffered events

iv.

B3

PullReq{{D}, {A1}}
PullReq{{D}, {A3}}

PullReq{{C},{B3}}

B1

B2

B2

A1

A2

A3

A1

A2

A3

A0B1

A1B1

A2B2

A3B2

A1B3

A2B3

A3B3

C6

C2

A0 B1

B3

B3

B3

B1

B2

B2

A1

A2

A3

A1

A2

A3

C2

C6

A1C2

A3C6

APRs

E Buffer

...

iv.

2

A1C2

A3C6

PullReq{{D}, {C6}}
PullReq{{D}, {C2}}

PullReq{{D}, {A1}}
PullReq{{D}, {A3}}
PullReq{{D}, {C6}}
Pull {{D}, {C2}}

iii.

D

2

C E

33

PM Construction1

ii.A0 B1

B3

B3

B1

B2

B2

A1

A2

A3

A2

A3 C6

E1
E2

E3

E4

E5
E6

E7
E8
E9

i. i.
E1

E4

E4

B3A1 C2 D2 E1v.

Generate matches
of q

v.

2
BD

CE

AD

CA,B

{A, C}{A, B}

Figure 2: Execution of the PrePP Plan p̂ (shown on top) for the query q evaluated in the event network Γ. The progress of
evaluating q at node 1 as well as the buffer states of node 1−3 after each of the acquisition steps of p̂. Arrows between the three
network nodes denote the exchange of pushed events, pull requests and events sent as pull responses.

created while processing e , a pull request is sent for each event in

the partial match of a type that is referenced in the pull set Ψi+1 of

the (next) acquisition step si+1 = (Ψi+1, ρi+1). This way, all events

of types ρi+1 are pulled from their sources.

Answer. The function answer takes as input a pull request r of
the input request stream and the node’s current buffer state B. It
returns a new buffer state B′

and set of events E to be sent in pull

responses. Let r be an event received in a pull request based on the

pull set Ψ used to pull events of type ϵ . The event r is processed
by the evaluation algorithm used to evaluate the projection p =
π (q,Ψ ∪ {ϵ}). For each new match of the projection p generated

based on event r , the contained ϵ event is sent as a pull response
and the partial matches of p comprising only events of the types

referenced in the pull set Ψ are buffered as active pull requests. To

ensure correct evaluation, an active pull request is maintained as

long as an ϵ event can be generated that, together with events of this
active request, leads to a new match of the projection π (q,Ψ∪ {ϵ}).

Example 7. We illustrate the execution of a PrePP plan with the

example shown in Fig. 2. Given the illustrated network with three

nodes, for a query q = SEQ(C,D,AND(A,B,E)), a PrePP plan p̂ with

p̂node = 1 and p̂steps = ⟨(∅, {A,B}), ({A,B}, {C}), ({A,C}, {D,E})⟩
is executed. Here, node 1 generates the matches of query q and, there-

fore, maintains a buffer of partial matches of q. The other nodes, in
turn, maintain a buffer for the events that are generated locally and

that are pulled according to the evaluation plan. That is, node 2 buffers

events of type D and node 3 buffers those of types {C,E}.
In the first step of p̂,A and B events are pushed to node 1. As events

of type A are generated only by node 1, events of type A do not have

to be sent over the network. The figure illustrates the state after an

event B3 has been received by node 1, which led to the creation of new

partial matches (A1,B3), (A2,B3), and (A3,B3). As a consequence,

pull requests are triggered. However, in the example, the A events of

the new partial matches have already been sent (i.e., eventsA0-A3 are

contained in the active pull requests (APRs) at node 3). Hence, only

B3 is sent to node 3 in a request to pull C events.

Node 3 receives the request and constructs matches of the projection

π (q, {A,B,C}) = SEQ(C,AND(A,B)). The C events contained in

matches of SEQ(C,AND(A,B)), in this case C2 and C6, are sent as

pull responses. Moreover, the partial matches of SEQ(C,AND(A,B))
comprising only events of the pull request, i.e., A and B events, denote

active pull requests and are stored in the buffer.

Node 2 receives events C2 and C6, which leads to the creation of

two new partial matches, comprising the events of available types

given as A(({A,B}, {C})) = {A,B,C}. This, in turn, triggers the pull

requests of the next acquisition step.

In the next (and last) acquisition step, the pull set is given by {A,C}.
Therefore, a pull request is sent for each A and C event in the newly

created partial matches, i.e., C2,C6,A3,A1, to the sources of D and

E events. Based on the events received in the pull requests, node 2

and node 3 generate matches of the projections SEQ(C,D,A) and
SEC(C,AND(A,E)), respectively. Then, D events and E events in the

resulting matches are sent in pull responses.

Receiving the events D2,E1,E4 at node 1 completes the execution

of the last step of p̂. It generates the match (A1,B3,C2,D2,E1) of q.

5.3 Correctness of PrePP Plans
A PrePP plan must guarantee correct query evaluation. That is,

for a PrePP plan p̂ = (p̂node , p̂steps) for the evaluation of q in a

network Γ = (N , f , r), the set of matches generated at p̂node must

be equivalent to the set of matches of q that can be generated over

the global trace of the network. Assuming that the employed query

evaluation algorithm operates correctly, for the PrePP plan p̂ to be

correct, it must hold that pull sets are based only on available event

types and that all event types are eventually acquired. We capture

these requirements as follows:

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Steven Purtzel, Samira Akili, and Matthias Weidlich

Definition 3 (Correct PrePP Plan). Let p̂ = (p̂node , p̂steps)
be a PrePP plan with p̂steps = ⟨s1, s2, . . . , sn⟩ for the evaluation of

query q. Plan p̂ is correct if

(i) the pull set of each acquisition step is a subset of the available

event types, ∀ 1 ≤ k ≤ n, sk = (Ψk , ρk) : Ψk ⊆ A(sk); and
(ii) all events necessary to generate the query matches are acquired,

E(q) =
⋃

1≤k≤n, sk=(Ψk ,ρk) ρk .

5.4 Cost Model
We quantify the quality of a PrePP plan for a query q in terms of

the induced transmission costs. This cost corresponds to the sum

of the rates with which the events required to generate matches of

q are sent over the network. For our cost model, we consider the

total rate R(ϵ) of an event type ϵ per time window specified by q.
As such, we abstract from the size of messages used to send events

which may vary based on the respective event type or the type of

message, i.e., pull requests or pull responses. Moreover, we assume

that direct communication between the nodes is possible such that

the costs of exchanging events is the same for each pair of nodes.

For a PrePP plan p̂ = (p̂node , p̂steps), we define a function c :

Σ → R that assigns transmission costs to an acquisition step s =
(Ψs , ρs) of p̂steps , as follows:

c(s) 7→
∑
ϵ ∈ρs

| f (ϵ)| ·
∑
ϵ ∈Ψs

R(ϵ)σ(ϵ,A(s)) +
∑
ϵ ∈ρs

R(ϵ)σ(ϵ, {ϵ }∪Ψs).

The first part of the sum captures the rates with which pull

requests are sent. The left factor defines the number of sources

producing events of the types ρs to acquire, as each of those re-

ceive pull requests in step s . A pull request is sent whenever an

event referenced by the pull set Ψs is received that triggers the

creation of a new partial match comprising events of all types in

A(s). The latter is equivalent to the generation of a new match

of the projection π (q,A(s)). As such, for each event type ϵ ∈ Ψs ,
the selectivity σ (ϵ,π (q,A(s))) describing the portion of distinct ϵ
events in matches of projection π (q,A(s)) estimates the rate with

which ϵ events are sent as pull requests.

The second part describes the rates with which pull responses

are sent. Let ϵ ∈ ρs be an event type to be acquired with the

pull set Ψs . To filter the ϵ events at their sources before sending

them back in respective pull responses, matches of the projection

p = π (q, {ϵ} ∪ Ψs) must be generated. The distinct ϵ events in

matches of p, estimated by applying the selectivity σ (ϵ, {ϵ} ∪ Ψs)
to ϵ ’s rate, are sent in the pull responses.

The total cost of a PrePP plan p̂ = (p̂node , p̂steps) is then obtained
by aggregating the costs of its acquisition steps:

c(p̂) 7→
∑

1≤k<n, with
p̂steps=⟨s1,s2, ...,sn ⟩

c(sk) −
∑

ϵ ∈E(q), s.t.
p̂node ∈ f (ϵ)

r (ϵ).

Here, the events generated by p̂node required for the evaluation of

query q do not have to be sent over the network and, hence, are

subtracted from the costs of the acquisition steps.

5.5 Optimality of PrePP Plans
The above cost model induces a notion of optimality for a PrePP

plan to evaluate a query q in an event network Γ.

Definition 4 (Optimal PrePP Plan). Let p̂ = (p̂node , p̂steps)
be a correct PrePP plan for the evaluation of a query q in an event

network Γ. Then, the plan p̂ is optimal if it has minimal cost, i.e., there

exists no other correct PrePP plan p̂i for q in Γ, such that c(p̂i) < c(p̂).

The construction of an optimal PrePP plan is computationally

hard. In fact, already the construction of a single acquisition step

is challenging. Given a set of available event types, the problem

to decide whether further event types needed for query evalua-

tion shall be pushed or pulled turns out to be NP-complete. Put

differently, a subset of the available event types may be used as a

pull set to reduce the rates with which the events of the missing

types are sent over the network. Yet, deciding whether this pays

off, in comparison to pushing the respective events directly, is an

NP-complete problem. We formalize this problem, induced by the

construction of a single acquisition step, as follows:

Problem 2 (PullAcqisition). Letq be a query and Γ = (N , f , r)
be an event network. Consider the construction of an acquisition step

s = (Ψs , ρs) in a PrePP plan for q in Γ to acquire events of types

ρs ⊆ E when the set of available event types is given by A(s) ⊆ 2
E
.

Then, the problem of Pull Acquisition is to decide whether there is a

pull set Ψs ⊆ A(s), such that∑
ϵ ∈Ψs

r (ϵ)σ(ϵ,A(s)) +
∑
ϵ ∈ρs

r (ϵ)σ(ϵ, {ϵ }∪Ψs) <
∑
ϵ ∈ρs

r (ϵ).

Theorem 1. Pull Acquisition is NP-complete.

Proof. NP-Hardness: We provide a polynomial-time reduction

of Vertex Cover to Pull Acqisition. Vertex Cover is an NP-

complete problem [15], where an undirected graph G = (V ,E) and
an integer k ∈ N are given. It must then be decided whether there

exists a subset of verticesV ′ ⊆ V of size at most |V ′ | ≤ k , such that

each edge e ∈ E has an endpoint in V ′
.

Our construction for this reduction, without loss of generality,

ensures the following properties:

(1) For any event type ϵ ∈ Ψs , it holds that R(ϵ) = r (ϵ), meaning

that only one source generates ϵ events.

(2) We pull a single event type, which is denoted by ϵ̄ , i.e., ρs = {ϵ̄}.
(3) The rate of any event type ϵ ∈ A(s) is r (ϵ) = 1, while the rate

r (ϵ̄) of the event type to be acquired satisfies r (ϵ̄) ≥ |A(s)| + 1.

(4) For any event type ϵ ∈ Ψs , the selectivityσ(ϵ,A(s)) is one. Hence,

it follows

∑
ϵ ∈Ψs r (ϵ)σ(ϵ,A(s)) =

∑
ϵ ∈Ψs r (ϵ) = |Ψs |.

Consider an instance of Vertex Cover given by an undirected

graph G = (V ,E) and an integer k ∈ N. To construct an instance of

Pull Acqisition, first, for each vertex v ∈ V , we create an event

type ϵ , which yields a universe of event types E of size |V |. The

resulting mapping is captured by a bijection µ : E → V . Moreover,

we assign each event type ϵ ∈ E a rate of r (ϵ) = 1 and define all

event types as being available, i.e., A(s) = E.

Now, we add an isolated vertex v̄ to the graph. As this vertex

has a degree of zero, it is never included in a vertex cover. For v̄ ,
we create the event type ē which, as mentioned above, has a rate

satisfying r (ē) ≥ |A(s)| + 1 and is the event type to be acquired,

i.e., ρs = {ē}.
Next, we define a function φ : V → 2

E
that returns for a vertex

v ∈ V the set of edges being incident tov . Function φ is computable

in polynomial time, e.g., by building the incidence matrix for G in

O(V 3) time and checking the respective row.

Predicate-Based Push-Pull Communication for Distributed CEP DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

Let Ψs ⊆ A(s) be a pull set and letK =
⋃
ϵ ∈Ψs φ(µ(ϵ)) be a set of

all edges in E corresponding to the choice of the pull set Ψs . Again,
we note that K can be calculated in polynomial time.

Let c̃ : E × 2
E → {0, 1} be a cost function that assigns a cost of

zero, if an edge e ∈ E is contained in K ; and a cost of one, otherwise.

c̃(e,K) 7→

{
0, if e ∈ K ,

1, otherwise.

We use function c̃ to define the selectivityσ(ϵ̄, {ϵ̄ }∪Ψs), in polynomial

time, for the event type to acquire, ϵ̄ , and a pull set Ψs ⊆ A(s):

σ(ϵ̄, {ϵ̄ }∪Ψs) =

{
1

r (ϵ̄)+1
, if

∑
e ∈E c̃(e,K) = 0 ∧ |Ψs | ≤ k,

1, otherwise.

Again, recall that the selection of the pull set Ψs determines K .
The selectivity σ(ϵ̄, {ϵ̄ }∪Ψs) is one, if there is at least one edge

e ∈ E, such that {e} ∩ K = ∅, whereby either K does not represent

a vertex cover in G or it holds |Ψs | > k . The selectivity is
1

r (ϵ̄)+1
, if

K = E and |Ψs | ≤ k . This is the case, if the edges K corresponding

to the pull set Ψs represent a vertex cover in G of the size |Ψs | ≤ k .
To explain the value

1

r (ϵ̄)+1
, recall the inequality of Problem 2:∑

ϵ ∈Ψs

r (ϵ)σ(ϵ,A(s)) +
∑
ϵ ∈ρs

r (ϵ)σ(ϵ, {ϵ }∪Ψs) <
∑
ϵ ∈ρs

r (ϵ).

Our construction yields ρs = {ϵ̄} and we ensured r (ϵ) = 1 and

σ(ϵ,A(s)) = 1 for all ϵ ∈ A(s). Hence, we obtain:

|Ψs | + r (ϵ̄)
1

r (ϵ̄) + 1

< r (ϵ̄).

We further required r (ϵ̄) ≥ |A(s)| + 1, so that the left term of the

inequality reduces to |Ψs | +
A(s)+1

A(s)+1+1
= |Ψs | + 0.9. From r (ϵ̄) ≥

|A(s)|+ 1, it also follows that |Ψs |+ 0.9 ≤ |A(s)|+ 0.9 < |A(s)|+ 1.

Therefore, the inequality of Problem 2 holds true.

Note that calculating σ(ϵ̄, {ϵ̄ }∪Ψs) is possible in polynomial time,

as for each edge e ∈ E, we check if it is contained in K .
It follows that there exists a subset Ψs ⊆ A(s) satisfying the

above conditions, if and only if:

⇐⇒
∑
ϵ ∈Ψs r (ϵ) +

r (ϵ̄)
r (ϵ̄)+1

< r (ϵ̄) and
∑
ϵ ∈Ψs r (ϵ) ≤ k .

Note: From

∑
ϵ∈Ψs r (ϵ) ≤ k , it follows that |Ψs | ≤ k , as

∑
ϵ∈Ψs r (ϵ) = |Ψs |.

⇐⇒ σ(ϵ̄, {ϵ̄ }∪Ψs) =
1

r (ϵ̄)+1
.

Note: From

∑
ϵ∈Ψs r (ϵ) < r (ϵ̄), it follows

∑
ϵ∈Ψs r (ϵ) +

r (ϵ̄)
r (ϵ̄)+1

< r (ϵ̄).

⇐⇒ Each edge e ∈ E is contained in K and |Ψs | ≤ k .
Note: The selection of the pull set Ψs ⊆ A(s) determines K .

⇐⇒ The subset Ψs ⊆ A(s) corresponds to a vertex cover in G of

size |Ψs |.
⇐⇒ There exists a vertex cover of size at most k in G.

From the above, we conclude on NP-hardness of Pull Acqisition.

NP-Membership: Membership in NP follows from the possibil-

ity to verify a potential solution in polynomial time. That is, the

inequality of Problem 2 is checked directly for some given input.

We conclude that Pull Acqisition is NP-complete. □

Finally, we note that the above results enable immediate conclu-

sions on the corresponding optimization problem. That is, finding

a pull set that incurs minimal cost must be NP-hard. Consequently,

also the computation of an optimal PrePP plan for a given query

and event network must be NP-hard.

Removed state(s):

1.
C−→ 1© B−→ 2© A−→©

2.
C−→��ZZ1©

B−→ 2© A−→©

3.
C−→ 1© B−→��ZZ2©

A−→©

4.
C−→��ZZ1©

B−→��ZZ2©
A−→©

Resulting plan:

1.
C−→ 1© B−→ 2© A−→©

2.
C,B−−→ 1© A−→©

3.
C−→ 1© B,A−−→©

4.
C,B,A−−−−→©

14

Figure 3: Partitioning Phase.

6 PREPP PLAN CONSTRUCTION
In the light of the complexity results for the construction of optimal

PrePP plans, this section is devoted to the efficient computation

of near-optimal plans. To this end, we first introduce a sampling

algorithm (§6.1) to deal with the combinatorial nature of the plan

construction, before turning to two caching strategies (§6.2).

6.1 Sampling Algorithm
In the construction of a PrePP plan, the order in which events are

acquired as well as the pull sets used per step need to be determined.

PrePP Plan Ordering. The number of possible orderings to

acquire events, referred to as PrePP plan orderings, corresponds to

the number of all possible weak orderings for a set of n elements [2].

In [5] it was shown that
n!

2·ln(2)n+1
is the closest approximation of

this number for n ≤ 15. Note that the denominator 2 · ln(2)n+1
is

smaller than one for all n > 0, so that the number of PrePP plan

orderings grows faster than the factorial function. As enumerating

all possible orderings quickly becomes infeasible, we start by enu-

merating all single-step plan orderings, i.e., plans in which events

of only one type are acquired per step. This decreases the number

of possible plans to n!. Yet, as enumerating all possible single-step

orderings also becomes infeasible for growing query lengths, we

adopt sampling and randomly draw a set of s single-step orderings.

Pull Set Enumeration.To generate an optimal single-step PrePP

plan for a sampled ordering, we compute the optimal pull set for

each acquisition step. Given a set of available event types, A(s),
and a set of event types to acquire, ρs , determining the optimal

pull set Ψs ⊆ A(s) for the step s = (Ψs , ρs) is NP-hard, so that a

brute-force search cannot be avoided in the worst case. As such,

for a single-step ordering, we enumerate all possible pull sets and

compute the costs of the resulting PrePP plan, keeping for each

ordering the pull sets for each step that minimize costs.

Top−k Pruning. Before transforming single-step PrePP plans

to multi-step PrePP plans, in which multiple event types can be

acquired within one acquisition step, we restrict ourselves to the

top-k single-step plans with the lowest costs. We later provide

experimental evidence that even for small values of k , the resulting
PrePP plans are often close to optimal plans.

Partitioning. For each top-k single-step plan, we generate all

possible multi-step plans. To this end, two adjacent acquisition

steps si = (Ψi , ρi) and si+1 = (Ψi+1, ρi+1) in a single-step plan are

merged to a step si = (Ψi , ρsi ∪ ρsi+1
). A single-step plan ordering

of length n contains n − 1 acquisition steps, in which events are

pulled. Hence, there are 2
n−1 − 1 respective multi-step orderings.

Example 8. Fig. 3 illustrates the partitioning for the acquisition

order of a single-step plan, which first pushes C events, before pulling

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Steven Purtzel, Samira Akili, and Matthias Weidlich

Resulting plans for p̂1:

1.
C−→ 1© B−→ 2© A−→©

2.
C,B−−→ 1© A−→©

3.
C−→ 1© B,A−−→©

4.
C,B,A−−−−→©

Resulting plans for p̂2:

1.
C−→ 1© A−→ 2© B−→©

2.
C,A−−→ 1© B−→©

3.
C−→ 1© B,A−−→©

4.
C,B,A−−−−→©

19

Figure 4: Caching opportunities during partitioning phase.

B events, and then pulling A events. As events are pulled in two out

of three steps, there are 2
3−1 − 1 = 3 possible multi-step plans.

Considering the overall complexity of our sampling algorithm,

we first note that there are exponentially many multi-step plan

orderings for each single-step plan ordering, while for each of

them, we also need to compute the optimal pull set.

Yet, with s as the size of sample of single-step orderings and k
as the pruning parameter, our sampling algorithm runs in O(s ·

2
|E(q) | + k · 2

|E(q) | · 2
|E(q) |) and, hence, O(k · 2

2 |E(q) |) time. As

such, we avoid the aforementioned factorial growth of the runtime.

6.2 Caching Strategies
We further improve the runtime of our sampling algorithm with

two caching strategies.

Pull Step Caching. For a set of PrePP plan orderings for the

same query, the computation of pull sets may benefit from caching.

The reasoning being that for different plans, we may assume the

same state in terms of the set of available event types and the set of

event types to acquire. Therefore, we compute the respective pull

set only once and cache it for reuse in other plans.

Example 9. Consider the following two plans for the same query:

A
−→ 1○

B
−→ 2○

C
−→ 3○

D
−→○ and

A,B
−−−→ 1○

C
−→ 2○

D
−→○. The first plan pushes

A events, before pulling B events,C events, and D events, in that order.

The second plan pushesA and B events, before pullingC and D events.

In either plan, at some point, pull sets to acquire C events need to be

computed with events of types {A,B} being available. Analogously,
at another point, pull sets to acquire D events are calculated based on

events of types {A,B,C} being available in either plan. As such, the

pull sets shall be cached.

Plan Caching.We employ a second caching strategy to prevent

the repeated calculation of entire plans. It exploits that the top-k
multi-step plan orderings generated in the partitioning phase may

overlap in their structure, as similar orderings might lead to similar

(low) costs. Therefore, we cache results for entire plans.

Example 10. Consider the single-step plans p̂1 and p̂2, for which

the ordering of steps is given in Fig. 4. Here, two multi-step plans are

actually equivalent, so that the computed pull sets shall be cached.

7 EXPERIMENTAL EVALUATION
We evaluated PrePP plans for distributed CEP in several experi-

ments. Below, we first review our setup (§7.1). We then report on

our results from a simulation study based on synthetic data (§7.2),

before turning to a case study using two real-world datasets (§7.3).

7.1 Experimental Setup
Evaluation Plan Generation. We considered several strategies

to generate an evaluation plan for a given query and event network.

PrePP. We computed the proposed PrePP evaluation plans using

sampling (§6.1) and our caching strategies (§6.2). Unless pointed out

otherwise, we set s = 1024 and k = 10 for the sampling algorithm.

Greedy PrePP. As a simple baseline, we implemented a greedy

algorithm to compute single-step PrePP plans. Here, the event

types are acquired in the order of their rates, starting with lowest

rate. While the first event type is pushed, the remaining steps are

computed by exploring the possible pull sets. However, to avoid the

exponential blow-up of the candidate pull sets, the greedy algorithm

incorporates only plans with pull set sizes of at most three.

Exact PrePP. To calculate optimal PrePP plans, we enumerated all

possible push-pull acquisition orderings, based on which optimal

pull sets have been determined. While the algorithm employs our

proposed pull step caching, see §6.2, it shows a high runtime and

hence, was included only in some of the experiments.

Push-Pull MuSE.To study the potential of incorporating predicate-

based push-pull communication into existing algorithms for in-

network processing of CEP queries, we integrated PrePP plans in

MuSE graphs [3]. A MuSE graph splits a query into projections

and places the projections at network nodes. In our extension, we

computed a PrePP plan for each of the used projections, which is

then evaluated by the respective node hosting the projection.

PPoP. As a state-of-the-art technique for distributed CEP with

push-pull-based communication, we considered the approach pre-

sented by Flouris et al. [10]. It combines a placement of query

operators with a model that incorporates pulling of events based

on temporal constraints derived from a query time window.

Datasets. To achieve a controlled setup in the simulation experi-

ments, we generated event networks with the following parameters:

◦ The event node ratio denotes the average percentage of event

types generated by a node. We vary it from 0.1 to 1.0.

◦ The event skew models differences in the rates. We draw rates

for event types from a Zipfian distribution, where a Zipfian pa-

rameter 1.1 denotes the highest differences in the rates, while,

for 2.0, the rates for each event type are almost equal and low.

◦ The number of nodes captures the size of the event network,

varied between 10 and 250.

As default values, we choose an event node ratio of 0.5, an event

skew of 1.3, and a network of 20 nodes.

Moreover, we conducted a case studywith two real-world datasets

from the domains of urban transportation and cluster monitoring.

We discuss the characteristics of these datasets in §7.3.

Query workload. We generated different query workloads for

each set of experiments, which differ in their number of contained

queries and query length. To generate a query of a given length l , i.e.,
based on l event types, we randomly choose a nesting depth from

[1, l − 1] and then assign sequence and conjunction operators in

alternating order to each level of nesting. Finally, we randomly dis-

seminate the l event types among the query operators. To simulate

query predicates, we uniformly drew selectivities from a predefined

range and assigned them to pairs of event types. The range had a

fixed maximum of 10
−2
, while the minimal selectivity was used as

a parameter that is varied between 10
−6

and 10
−2
.

Predicate-Based Push-Pull Communication for Distributed CEP DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

Metrics. To assess the quality of the constructed evaluation

plans, we measure the transmission ratio. It is a normalized measure

defined as the transmission costs induced by the constructed plan

divided by the transmission costs of a centralized push-based plan.

Also, we report on the execution time of plan construction and

measure the detection latency induced by the evaluation plans.

Simulation.We implemented the algorithms mentioned above

in Python to conduct simulation experiments. For each network pa-

rameter, we generated 50 networks per parameter value. Moreover,

we averaged the presented results over 500 runs per experiment.

Case Study Implementation. Moreover, to conduct our case

study, we implemented an automata-based CEP engine, written

in C#, which supports the evaluation of CEP queries using PrePP

plans. That is, each node runs an instance of the engine, whereby

the communication between nodes is handled by Ambrosia [12], a

framework for resilient distributed computing.

Watermarking. To evaluate PrePP plans, events, active pull re-

quests, and partial matches must be buffered as long as they can

lead to the generation of a correct match. However, due to the dis-

tributed nature of our setting, it cannot be decided for a single event

if it can still lead to a match by solely considering the time window

of the query. Therefore, we realize a watermarking mechanism:

While we cannot make assumptions about the time in which an-

other node receives an event generated by a node, we assume that

all events sent by one node are received in the order in which they

have been sent. Exploiting this order, we keep track of the newest

timestamp carried by an event for each node so that the events

received from all nodes enable us to derive a global watermark.

Based thereon, we can remove items that may no longer participate

in a match from the respective buffers.

Out-of-order arrivals. Since the events sent from different nodes

can arrive in any order, the algorithm for query evaluation needs

to handle out-of-order arrivals. Our CEP engine achieves this by

exploiting an evaluation model based on tree NFAs [16], where for

each state, there are as many transitions into subsequent states as

required event types that have not yet been processed up to that

point. Moreover, all potential sequence constraints of a query and

predicates must be satisfied and checked for a state transition.

Code Availability. The setup for all experiments is publicly

available,
1
including instructions on how to reproduce the results.

7.2 Simulation Experiments
Network and Query Characteristics. We study the influence of

network and query characteristics with a single query over 10 event

types. Fig. 5 shows the transmission ratios obtained with PrePP

plans constructed with the greedy and the sampling algorithm. In

all experiments, the PrePP plans constructed with our sampling

algorithm clearly outperform the greedy plan construction. Hence,

we focus our discussion on the sampling-based plans.

Event node ratio. PrePP plans benefit most when the event node

ratio is low, i.e., there are not many sources per event type, as in

this case, only a few pull requests have to be sent in each step. For

an event node ratio of 0.1, the sampling-based PrePP plan achieves

a transmission ratio of 0.006 (Fig. 5a). Increasing the event node

ratio increases the global rate of all event types in the network.

1
https://github.com/spurtzel/PrePP

Hence, pull requests become more expensive. However, even for an

event node ratio of 1.0, the PrePP plans reduce event transmission

by around two orders of magnitude.

Event skew. PrePP plans benefit from a high event skew: Events

generated with low frequency are pushed to the sink node at low

cost and then used for effective filtering when pulling the events of

the remaining types. For an event skew of 1.1, the sampling-based

PrePP plans achieve a transmission ratio of 1%(Fig. 5b). As the

event skew decreases, the above effect decreases, and, therefore, the

transmission ratio increases. The results of this experiment show

the highest variance as for each data point new rates are drawn for

each event type of the query by a Zipf random generator.

Number of nodes. The network size behaves similarly to the event

node ratio, with the difference being that the number of sources per

event type is not bounded. Thus, PrePP plans benefit most for small

networks and achieve a transmission ratio of 0.007 for 10 nodes, see

Fig. 5c. Yet, even for networks with 250 nodes, the sampling-based

PrePP plan has a transmission ratio of only 0.07.

Minimal selectivity. The smaller the minimum selectivity incor-

porated in a query, the more selective it is, which leads to larger

filtering opportunities when pulling events. For a minimal selectiv-

ity of 10
−6
, the PrePP plan constructed with the sampling algorithm

reduces transmission costs by three orders of magnitude.

Combination with In-network Processing. We compared

the transmission costs of PrePP plans, MuSE graphs, and MuSE

graphs extended with PrePP plans. We used a query workload com-

prising five queries, each containing at most six event types. We

applied the exact algorithm for the computation of PrePP plans.

Comparing the results obtained for MuSE graphs and Push-Pull

MuSE graphs, the optimization potential is low in general(Fig. 6).

Due to the decomposition of the query workload into many projec-

tions, the number of event types required to evaluate a projection

decreases. However, PrePP plans can hardly optimize the event

acquisition based on a few event types. Yet, we note some optimiza-

tion potential in the experiment on the network size, see Fig. 6c.

Increasing the network size leads to multi-sink placements being

more costly since the number of nodes producing a particular event

type increases. Therefore, more events are pushed in general, which

yields optimization potential for push-pull-based communication.

PrePP Plan Construction. Next, we focus on constructing

PrePP plans with sampling. To this end, Fig. 7 reports on the quality

of the obtained plans in terms of the transmission ratio and the

time required to construct them for different variations of this al-

gorithm when varying the query length. The latter is captured by

the number of event types to acquire for query evaluation.

Comparison to optimal plans. Fig. 7a illustrates that, as the number

of event types to be acquired increases, so does the potential for

optimization. For the sampling algorithm, we have set both the

sample size s and the pruning parameter k to the number of event

types to acquire. Despite the small number of samples, we note that

the algorithm constructs near-optimal PrePP plans. In addition, we

investigated a configuration of the sampling algorithm in which

the top-k samples are selected as the best-k single-step PrePP plans

before the partitioning phase of our algorithm is applied. This

configuration stays very close to the optimal plan, which underlines

our design choice to perform the partitioning solely based on a

sample of the single-step plans.

https://github.com/spurtzel/PrePP

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Steven Purtzel, Samira Akili, and Matthias Weidlich

0.2 0.4 0.6 0.8 1.0
Event Node Ratio

10−3

10−2

10−1

100

Tr
an

sm
iss

io
n

Ra
tio

Greedy Sampling

(a)

1.2 1.4 1.6 1.8 2.0
Event Skew

10−3

10−2

10−1

100

Tr
an

sm
iss

io
n

Ra
tio

Greedy Sampling

(b)

0 50 100 150 200 250
Number of Nodes

10−2

10−1

100

Tr
an

sm
iss

io
n

Ra
tio

Greedy Sampling

(c)

10−6 10−5 10−4 10−3 10−2

Minimal Selectivity

10−3

10−2

10−1

100

Tr
an

sm
iss

io
n

Ra
tio

Greedy Sampling

(d)
Figure 5: Varying network and query characteristics for a single query.

0.2 0.4 0.6 0.8 1.0
Event Node Ratio

10−2

10−1

Tr
an

sm
iss

io
n

Ra
tio

MuSE
Push-Pull MuSE

PrePP

(a)

1.2 1.4 1.6 1.8 2.0
Event Skew

10−1

100

Tr
an

sm
iss

io
n

Ra
tio

MuSE
Push-Pull MuSE

PrePP

(b)

0 50 100 150 200 250
Number of Nodes

10−2

10−1

100

Tr
an

sm
iss

io
n

Ra
tio

MuSE
Push-Pull MuSE

PrePP

(c)

10−6 10−5 10−4 10−3 10−2

Minimal Selectivity

10−2

10−1

Tr
an

sm
iss

io
n

Ra
tio

MuSE
Push-Pull MuSE

PrePP

(d)
Figure 6: Varying network and query characteristics for multiple queries.

2 3 4 5 6 7 8 9 10
#Event Types to Acquire

10−1

100

Tr
an

sm
iss

io
n

Ra
tio

Sampling
Top-k = Best-k

Exact

(a)

2 3 4 5 6 7 8 9 10
#Event Types to Acquire

10−3
10−2
10−1
100
101
102
103
104
105

Ex
ec

ut
io

n
Ti

m
e

in
 S

ec
on

ds

Sampling
Top-k = Best-k

Exact

(b)

4 5 6 7 8 9
#Event Types to Acquire

10−2
10−1
100
101
102
103
104
105

Ex
ec

ut
io

n
Ti

m
e

in
 S

ec
on

ds

No Cache Sampling
Cache Sampling
No Cache Best-k

Cache Best-k
No Cache Exact
Cache Exact

(c)
2 3 4 5 6 7 8 9 10

#Event Types to Acquire

10−1

100

Tr
an

sm
iss

io
n

Ra
tio

1 Sample
4 Samples
8 Samples
16 Samples

64 Samples
256 Samples
1024 Samples
Exact

(d)
Figure 7: Transmission ratio and execution times for the sampling algorithm.

Next, Fig. 7b shows the times needed to construct the respective

PrePP plans. As the number of types to be acquired increases, the

runtime of all procedures also increases. Yet, for the sampling algo-

rithm, the respective growth is much smaller compared to the other

two algorithms. For queries consisting of 10 different event types,

the sampling algorithm completes the construction of a plan in 10

seconds, which is practically feasible. The exact algorithm, in turn,

needs around 10
5
seconds, i.e., 1.15 days, for plan construction.

Benefit of caching. The impact of our caching strategies is ex-

plored in Fig. 7c. We consider up to 9 event types to acquire, since

for 10 types, the exact algorithm without caching did not termi-

nate (timeout of four weeks). For all methods, it is apparent that

caching is beneficial and reduces the runtime considerably. For 9

event types to acquire, we reduce the runtime by around two orders

of magnitude for all algorithms. For the sampling algorithm, the

benefits are even more pronounced, with runtime improvements

of more than five orders of magnitude.

Impact of sample sizes. Fig. 7d shows the effect of increasing the

number of samples s drawn in the construction of a PrePP plan.

Clearly, a larger sample size improves the quality of the resulting

plans. However, already for a relatively small sample of size 8, the

result approximates the optimal plan very well. Also, for a larger

number of samples, the resulting benefit becomes negligible.

PrePP 2 PrePP 3 PrePP 4 PrePP 5

105

0.00 0.25 0.50 0.75 1.000.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

(m
s)

(a)

3 4 5 6 7 8 9 10
#Event Types to Acquire

10 3

10 2

10 1

100

T
ra

n
sm

is
si

o
n
 R

a
ti

o

(b)

Figure 8: Detection latency and the impact of the selectivity.

Detection Latency. We also examined the effects of the length

of PrePP plans on the detection latency. Fig. 8a shows that the detec-

tion latency increases with growing plan length. Such an increase

is expected since the number of round-trips in event transmission

increases due to pull-based communication. However, we observe

that the detection latency for plans of length two, PrePP 2, is slightly

higher than for plans of length three, PrePP 3. We attribute this to

the processing latency induced by query evaluation. In this case, for

a plan of length two, more events have to be sent over the network,

which increases the number of events to process.

Impact of Selectivity. Fig. 8b illustrates the impact of the se-

lectivities of the used queries on the transmission ratios obtained

for the constructed PrePP plans. To this end, for different query

Predicate-Based Push-Pull Communication for Distributed CEP DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Event Skew

10−3

10−2

10−1

100

Tr
an

sm
iss

io
n

Ra
tio

PPoP PrePP

(a)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Event Skew

10−5

10−4

10−3

10−2

10−1

100

Tr
an

sm
iss

io
n

Ra
tio

PPoP PrePP

(b)

Figure 9: State-of-the-art comparison.

lengths, we introduced variance in the selectivity assigned to pairs

of event types. The obtained transmission ratios are partially larger

for shorter query lengths, since these plans includes less optimiza-

tion potential through pull-based communication. However, in

general, we see little variance in the transmission ratios over all

query lengths, indicate a certain robustness of our approach.

Comparison with the State of the Art. Finally, we compared

PrePP plans against a state-of-the-art technique for distributed CEP

that adopts push-pull-based communication based on temporal

constraints induced by a query time window [10]. Fig. 9a illustrates

the results for networks with varying event skew, where all event

types have rates lower than one. The latter is essential for pull-

based approaches based on temporal constraints to be applicable.

We observe that methods leverage large differences in the rates,

but become less effective once the event skew increases. Fig. 9b,

in turn, shows results for networks, in which all event types have

a rate larger than one. As discussed earlier, pull requests based

on time windows do not yield any benefit in these scenarios: The

evaluation plan degrades and corresponds to a plan that would

push all events. In contrast, our PrePP plans can still make effective

use of pull-based communication due to the fine-granular filtering

at event sources based on query predicates.

7.3 Case Study
Finally, we evaluated the efficiency of PrePP plans for distributed

CEP in a case study with two real-world datasets.

Citi Bike. We used one month of the Citi Bike dataset [9]; a

trace of 1 million events. Citi Bike is a bike-sharing service that

publishes monthly information about completed bike rides. A ride

is an event that consists of payload information such as the bike ID,

trip duration, start/end station of a ride, and customer information.

We defined 9 event types describing bike rides of varying duration,

performed by customers of different age groups. We partitioned

the events using the station ID to generate local traces for 20 nodes.

Over the resulting event stream, we defined two CEP queries us-

ing a time window of 24 hours. Query 1 for the Citi Bike dataset

in Listing 1 detects whether short, long, and very long trips with the

same bike ID are made by premium and non-premium customers

in an arbitrary order. From an application perspective, such a CEP

query could provide analytical information about the frequency of

a single bicycle being used within 24 hours, drawing attention to

potential bike maintenance or indicating that particularly durable

bikes might be worth renting to reduce the number of inspections.

Based on the bike ID, we determined the selectivities of the query’s

predicates to generate PrePP plans. We evaluated the plans using

our distributed CEP engine. The resulting transmission ratios can

Citi Bike Query 1:
PATTERN AND(ShortY sy, LongY ly, LongO lo, VLongC vc)
WHERE sy.bID=ly.bID ∧ ly.bID=lo.bID ∧ lo.bID = vc.bID
WITHIN 24h
Google Cluster Query 2:
PATTERN SEQ(Update1 u, Submit su, Schedule s, Finish
f)
WHERE u.uID=su.uID ∧ su.uID=s.uID ∧ s.uID=f.uID
WITHIN 30min

Listing 1: Example queries used in the case study.
Table 3: Transmission ratios for case study.

Query 1 Query 2

Citi Bike 0.002% 0.01%

Google Cluster 0.02% 0.008%

be found in Table 3. Due to the high selectivities, our PrePP plans

resulted in a transmission ratio ≤ 0.01% for both Citi Bike queries.

Google cluster. For the second case study, we used a Google

cluster monitoring dataset [24], containing a trace with 4.35 million

events. Attribute values include a machine/user/job ID or the prior-

ity for a particular job. There are 9 different event types representing

the task life cycle. We partitioned the events using the machine

ID to obtain local traces for 20 nodes. Again, we defined two CEP

queries over the resulting event stream with a time window size

of 30 minutes. Query 2 for the Google Cluster dataset in Listing 1

detects a sequence pattern, where a job was first updated, then

submitted, afterward scheduled, and then finished. In practice, such

a query helps to analyze the number of successful jobs fulfilling

this sequence of actions for planning future processes. We derived

the selectivities using the same job id for different tasks within

the defined time window. The resulting PrePP plans generated a

transmission ratio of ≤ 0.02% for both queries, see Table 3.

Our case studies illlustrate that PrePP plans can successfully

handle data distributions as encountered in real-world datasets.

8 RELATEDWORK
CEP query evaluation shows exponential runtime in the number

of events to be processed [25], i.e., a single event can double the

number of partial matches to be maintained. As such, several strate-

gies aiming for efficient query evaluation have been proposed,

including sub-pattern sharing [19, 20], parallelization [6], data

prefetching [27], lazy query evaluation [16], or load shedding [7, 26].

Kolchinsky et al. [16] introduced a lazy evaluation mechanism that

exploits event rates and selectivities to reduce the number of partial

matches to be maintained during the query evaluation. To this end,

the evaluation automata are re-arranged in descending order of

event rates so that events of the rarest event type are required to

materialize a partial match. The underlying idea of PrePP plans is

similar, as, dictated by the rates and selectivities, the acquisition

order of a plan is chosen such that the number of partial matches

generated and thereby, the number of messages sent is reduced.

Zhao et al. [26] developed a hybrid load shedding model to shed

input events and partial matches that will likely lead to no further

match using the selectivities of query predicates. The resulting ap-

proach facilitates best-effort evaluation during overload situations.

We adopt the idea of leveraging selectivities from predicates to

reduce the number of partial matches, which in our case is reflected

by the number of messages sent over the network.

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Steven Purtzel, Samira Akili, and Matthias Weidlich

Distributed CEP. Publish-subscribe systems realize some form

of distributed event processing, where event producers initiate

the communication (publish) and events are sent to subscribing

consumers (subscribe). The PADRES system [13] denotes an instan-

tiation of the pub-sub paradigm having a SQL-based declarative

language (PSQL) for continuous queries over event streams with

a time-based or count-based sliding window. To reduce communi-

cation costs of distributed event processing, operator placement

strategies [3, 8, 18, 22], and frameworks [17] have been proposed.

The idea is to decompose a query into its operators and assign

them to network nodes for evaluation so that partial matches are

exchanged between nodes to produce matches of the query. In our

model, nodes also evaluate operators (projections). Yet, instead of

partial matches, only the atomic events that create partial matches

are sent over the network. Moreover, most operator placement

approaches exclusively rely on push-based communication.

Push-pull plans. Push-pull-based CEP query evaluation in a

network of event sources was first proposed by Akdere et al. [2]

to prevent sending events ultimately not leading to matches. To

this end, temporal constraints derived from the time window of

a query are leveraged. Recently Flouris et al. [10] combined push-

pull-plans as described in [2] with operator placement. However,

as discussed, for time window-based pulling to be beneficial, some

event types must have sufficiently low rates to not occur in each

time window. We showed empirically that our PrePP plans outper-

form their approach. In [23], push-pull plans for queries over event

streams created by dedicated processes are proposed that leverage

behavioral constraints resulting from business process models, e.g.,

mutual exclusion or checks on IDs [23]. However, unlike our work,

in [23], predicates are based on an underlying business process

model, and the employed push-pull plans aim to reduce memory

consumption.

9 CONCLUSIONS
We proposed PrePP plans as a model for evaluating CEP queries

in networks. While we focused on a query language restricted to

the operators SEQ,AND, andOR, support for negation and Kleene

closure can naturally be incorporated into our PrePP model and is

subject to future work. PrePP plans specify the acquisition order

for event types and include pull sets, which enable fine-granular

filtering by exchanging events to evaluate predicates. We further

presented a cost model, characterized optimal PrePP plans, and

provedNP-completeness for constructing an acquisition step, which

renders the construction of optimal PrePP plans NP-hard. Striving

for efficient plan construction, we developed a sampling algorithm

and two caching strategies. They yield near-optimal PrePP plans

while reducing the time for plan construction by up to five orders

of magnitude over a naive algorithm. Our experiments also demon-

strated that PrePP plans may reduce event transmission in query

evaluation by up to three orders of magnitude.

ACKNOWLEDGMENTS
This workwas partially funded by the German Research Foundation

(DFG), project-ID 414984028, CRC 1404.

REFERENCES
[1] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. 2008. Effi-

cient pattern matching over event streams. In SIGMOD, ACM, 147–160.

[2] Mert Akdere, Uǧur Çetintemel, and Nesime Tatbul. 2008. Plan-based complex

event detection across distributed sources. VLDB 1, 1 (2008), 66–77.

[3] Samira Akili and Matthias Weidlich. 2021. MuSE Graphs for Flexible Distribution

of Event Stream Processing in Networks. In SIGMOD, ACM, 10–22.

[4] Alexander Artikis, Alessandro Margara, Martín Ugarte, Stijn Vansummeren, and

Matthias Weidlich. 2017. Complex Event Recognition Languages: Tutorial. In

DEBS. ACM, 7–10.

[5] Ralph W. Bailey. 1998. The number of weak orderings of a finite set. Social Choice

and Welfare 15, 4 (1998), 559–562.

[6] Cagri Balkesen, Nihal Dindar, Matthias Wetter, and Nesime Tatbul. 2013. RIP:

run-based intra-query parallelism for scalable complex event processing. In DEBS.

ACM, 3–14.

[7] Koral Chapnik, Ilya Kolchinsky, and Assaf Schuster. 2021. DARLING: Data-Aware

Load Shedding in Complex Event Processing Systems. VLDB 15, 3 (2021), 541–554.

[8] Jianxia Chen, Lakshmish Ramaswamy, David K Lowenthal, and Shivkumar Kalya-

naraman. 2012. Comet: Decentralized complex event detection in mobile delay

tolerant networks. In MDM. IEEE, 131–136.

[9] Citi Bike. 2022. Posted at http://www.citibikenyc.com/system-data.

[10] Ioannis Flouris, Nikos Giatrakos, Antonios Deligiannakis, and Minos N. Garo-

falakis. 2020. Network-wide complex event processing over geographically

distributed data sources. Inf. Syst. 88 (2020).

[11] Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligiannakis, and

Minos N. Garofalakis. 2020. Complex event recognition in the Big Data era: A

survey. VLDB J. 29, 1 (2020), 313–352.

[12] Jonathan Goldstein, Ahmed S. Abdelhamid, Mike Barnett, Sebastian Burckhardt,

Badrish Chandramouli, Darren Gehring, Niel Lebeck, Christopher Meiklejohn,

Umar Farooq Minhas, Ryan Newton, Rahee Peshawaria, Tal Zaccai, and Irene

Zhang. 2020. A.M.B.R.O.S.I.A: Providing Performant Virtual Resiliency for Dis-

tributed Applications. VLDB 13, 5 (2020), 588–601.

[13] Hans-Arno Jacobsen, Vinod Muthusamy, and Guoli Li. 2009. The PADRES Event

Processing Network: Uniform Querying of Past and Future Events. In it - Infor-

mation Technology. 250–260.

[14] Mohit Jain, Vikas Chandan, Marilena Minou, George A. Thanos, Tri Kurniawan

Wijaya, Achim Lindt, and Arne Gylling. 2015. Methodologies for effective demand

response messaging. In SmartGridComm. IEEE, 453–458.

[15] Richard M. Karp. 1972. Reducibility among Combinatorial Problems. In Com-

plexity of Computer Computations. Springer, 85–103.

[16] Ilya Kolchinsky, Izchak Sharfman, and Assaf Schuster. 2015. Lazy evaluation

methods for detecting complex events. In DEBS. ACM, 34–45.

[17] Manisha Luthra, Boris Koldehofe, Niels Danger, Pascal Weisenburger, Guido

Salvaneschi, and Ioannis Stavrakakis. 2021. TCEP: Transitions in operator place-

ment to adapt to dynamic network environments. J. Comput. Syst. Sci. 122 (2021),

94–125.

[18] Peter R. Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopoulos, Matt

Welsh, and Margo I. Seltzer. 2006. Network-Aware Operator Placement for

Stream-Processing Systems. In ICDE. IEEE, 49.

[19] Olga Poppe, Chuan Lei, Lei Ma, Allison Rozet, and Elke A. Rundensteiner. 2021.

To Share, or not to Share Online Event Trend Aggregation Over Bursty Event

Streams. In SIGMOD. ACM, 1452–1464.

[20] Medhabi Ray, Chuan Lei, and Elke A. Rundensteiner. 2016. Scalable Pattern

Sharing on Event Streams. In SIGMOD. ACM, 495–510.

[21] Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter R. Pietzuch. 2009.

Distributed complex event processing with query rewriting. In DEBS. ACM.

[22] Fabrice Starks and Thomas Peter Plagemann. 2015. Operator placement for

efficient distributed complex event processing in MANETs. In WiMob. IEEE,

83–90.

[23] Matthias Weidlich, Holger Ziekow, Avigdor Gal, Jan Mendling, and Mathias

Weske. 2014. Optimizing Event Pattern Matching Using Business Process Models.

IEEE TKDE 26, 11 (2014), 2759–2773.

[24] John Wilkes. 2020. Yet more Google compute cluster trace data. https://ai.

googleblog.com/2020/04/yet-more-google-compute-cluster-trace.html.

[25] Haopeng Zhang, Yanlei Diao, and Neil Immerman. 2014. On complexity and

optimization of expensive queries in complex event processing. In SIGMOD. ACM,

217–228.

[26] Bo Zhao, Nguyen Quoc Viet Hung, and Matthias Weidlich. 2020. Load Shedding

for Complex Event Processing: Input-based and State-based Techniques. In ICDE.

IEEE, 1093–1104.

[27] Bo Zhao, Han van der Aa, Thanh Tam Nguyen, Quoc Viet Hung Nguyen, and

Matthias Weidlich. 2021. EIRES: Efficient Integration of Remote Data in Event

Stream Processing. In SIGMOD. ACM, 2128–2141.

http://www.citibikenyc.com/system-data
https://ai.googleblog.com/2020/04/yet-more-google-compute-cluster-trace.html
https://ai.googleblog.com/2020/04/yet-more-google-compute-cluster-trace.html

	Abstract
	1 Introduction
	2 Motivating Example
	3 Background
	3.1 Network Model
	3.2 Query Language

	4 Problem Statement
	5 Predicate-Based Push-Pull Plans
	5.1 PrePP Model
	5.2 PrePP Plan Execution
	5.3 Correctness of PrePP Plans
	5.4 Cost Model
	5.5 Optimality of PrePP Plans

	6 PrePP Plan Construction
	6.1 Sampling Algorithm
	6.2 Caching Strategies

	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Simulation Experiments
	7.3 Case Study

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

