
CougaR: Fast and Eclipse-Resilient Dissemination for Blockchain
Networks

Evangelos Kolyvas
ekolyvas@aueb.gr

Department of Informatics
Athens University of Economics and Business

Athens, Greece

Spyros Voulgaris
voulgaris@aueb.gr

Department of Informatics
Athens University of Economics and Business

Athens, Greece

ABSTRACT
Despite their development for over a decade, a key problem block-
chains are still facing is scalability in terms of throughput, typically
limited to a few transactions per second. A fundamental factor lim-
iting this metric is the propagation latency of blocks through the
underlying peer-to-peer network, which is typically constructed by
means of random connectivity. Disseminating blocks fast improves
not only the transaction throughput, but also the security of the sys-
tem as it reduces the probability of forks. In this paper we present
CougaR: a simple yet efficient, eclipse-resistant, decentralized pro-
tocol that substantially reduces the block dissemination time in
blockchain networks. CougaR’s key advantages stem from its link
selection policy, which combines a network latency criterion with
randomness to offer fast and reliable block dissemination to the
entire network. Moreover, CougaR is eclipse-resistant by design, as
nodes are protected from having all their links directly or indirectly
imposed on them by others, which is the typical vulnerability ex-
ploited to deploy eclipse attacks. We rigorously evaluate CougaR
by an extensive set of experiments, both against a wide spectrum
of parameter settings, and in comparison to the current state of the
art.
ACM Reference Format:
Evangelos Kolyvas and Spyros Voulgaris. 2022. CougaR: Fast and Eclipse-
Resilient Dissemination for Blockchain Networks. In The 16th ACM Interna-
tional Conference on Distributed and Event-based Systems (DEBS ’22), June
27–30, 2022, Copenhagen, Denmark. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3524860.3539805

1 INTRODUCTION
Blockchains are a technology for maintaining a Byzantine fault
tolerant [34] public ledger of transactions (a state machine repli-
cation) across nodes in a Peer-to-Peer (P2P) network. Compared
to ledgers that are based on more classic consensus protocols, a
key difference is that blockchains have no central permissioning
authority to control participation of nodes in the network. Instead,
permissioning in the consensus layer is mediated by a resource.
For example, in Proof-of-Work (PoW) protocols the mediated re-
source is the amount of hashing power, whereas in Proof-of-Stake

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DEBS ’22, June 27–30, 2022, Copenhagen, Denmark
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9308-9/22/06. . . $15.00
https://doi.org/10.1145/3524860.3539805

(PoS) protocols it is the amount of stake a node has that decides
its participation in the network. This mechanism of limiting each
node’s influence to the system by weighing its possession of a finite
resource, protects the consensus layer against sybil attacks [22].

Blockchain technology was first used as an underlying tech-
nology in Bitcoin [43], a cryptocurrency that was launched by
Satoshi Nakamoto in 2008. Since then, there has been a prolifera-
tion of applications leveraging the power of blockchains as a core
component. 1st generation blockchains, like Bitcoin, introduce an
electronic payment system to transfer and store value based on
cryptographic proof instead of trust. 2nd generation blockchains,
like Ethereum [19], provide a Turing-complete programming lan-
guage that can be used to encode arbitrary state transition functions
simply by writing a few lines of code in a smart contract. 3rd gen-
eration blockchains, like Cardano [7], improve upon the previous
two generations by solving three big pain points: scalability, inter-
operability, and sustainability.

Despite their fame and evolution, a key problem blockchain
systems are still facing today is scalability. Although transactions
per second (tps) is not the most accurate measure, as the size of
the transactions may vary drastically (transaction bytes per second
may be a better measure), it can provide an overview to compare
the most popular representatives of each blockchain generation
with a classical payment system: Bitcoin can support a maximum
of 7 tps, Ethereum 15 tps, and Cardano 7 tps, which are in stark
contrast to established payment systems like Visa that can support
more than 2000 tps [14].

The low throughput of these systems constitutes the focus of
many proposals aiming at improving it, including sharding [33,
37, 51, 53], alternative consensus mechanisms [17, 23, 25, 29, 32],
changes in the way and structure of how data is stored [2–4], using a
directed acyclic graph (DAG) instead of a chain [6, 10, 35, 36, 48, 49],
or employing payment channels [13, 20, 46], side chains [11, 16, 45],
and cross-chain protocols [8, 52]. While all these proposals offer
sophisticated solutions, a fundamental factor limiting the perfor-
mance of blockchain systems is the latency of the layer underneath,
that is, the inherent message propagation delay introduced by the
P2P network.

Reducing the message propagation delay can lead to higher
transaction throughput, as it allows one to increase the block size,
to increase the block generation rate, or to employ faster consensus
algorithms. Besides higher throughput, reducing the propagation
delay also strengthens the security of the system by lowering the
probability of forks. A fork is the situation where two blocks happen
to be generated in parallel (i.e., neither of the two miners being
aware of the other block while generating their own), leading to a
temporary ambiguity on what the official state of the chain is. As

https://doi.org/10.1145/3524860.3539805
https://doi.org/10.1145/3524860.3539805


DEBS ’22, June 27–30, 2022, Copenhagen, Denmark E. Kolyvas and S. Voulgaris

such ambiguities may be exploited for illicit behavior, minimizing
message propagation delay does not only offer higher performance
but also stronger security guarantees.

At its core, a blockchain protocol functions by periodically com-
bining transactions into blocks and broadcasting them over the
network. Block dissemination implementations are typically based
on unstructured overlay networks, formed based on random connec-
tivity: each node establishes a number of connections to a random
set of peers. A typical example of such a network is the Bitcoin
network [21]. However, it is easy to see why such a policy is subop-
timal: a protocol that does not take neighbors’ proximity (in terms
of network delay) into account may result into delivering a block
to a node within the same datacenter through a path that spans the
entire planet.

As a consequence, proposals have been made for faster and more
sophisticated dissemination protocols [38, 47]. While all these solu-
tions provide some speed improvements, they turn to handle the is-
sue as a trade-off between fast and secure (eclipse-resistant) dissem-
ination of blocks. According to them, the dissemination should be:
a) either fast (but not secure), by employing a scoring function that
turns to match the well-connected peers among themselves [38].
However, such an adaptive protocol that can be manipulated by an
adversary [50] and leave the victim just with 1 or 2 non-adversarial
neighbors, thus eclipsing the vast majority of its connections, b) or
secure (but not fast), by employing a performance-agnostic proto-
col [21, 47] which almost completely disregards any tuning to be
faster.

Another issue with blockchain networks is bandwidth consump-
tion. A well-designed dissemination protocol should be bandwidth
efficient for block relay, otherwise it can fail to achieve its goals. In
a dissemination protocol which nodes carelessly waste their band-
width by relaying much redundant information (e.g. flooding the
network each time they meet a new block), many things can go
wrong. In a bandwidth inefficient protocol, downstream peers can
have moderate inbound bandwidth spikes, however upstream peers
may have significant outbound bandwidth spikes, especially the
nodes that receive the new block in the early stages of dissemina-
tion, before their neighbors [3]. Upon receiving a block earlier than
its neighbors, a node needs to send the new block multiple times,
one to each neighbor. Such bandwidth spikes not only delay the
transmission of blocks, but also can make consumer-grade internet
connections temporarily unusable. Thus, decreasing bandwidth
consumption in blockchain networks is an important factor to en-
hance scalability as it is beneficial for many individuals running
nodes, which, in turn, enhances security indirectly.

In this paper we focus on building more efficient P2P topologies
for block dissemination tailored for state-of-the-art blockchains.
We present CougaR: a simple yet efficient adaptive decentralized
protocol that decides which neighbors a node should connect to
based on a combination of proximity (in terms of network latency)
and randomness. CougaR is not only fast, but also eclipse-resistant
and bandwidth-efficient. We advocate our proposed protocol by
presenting an extensive simulation-based evaluation demonstrating
its performance.

The remainder of this paper is organized as follows. We first
present a short background on epidemic dissemination in Section 2.
In Section 3 we advocate our design and we present the CougaR

protocol. In Section 4 we lay out the experimental setup and in
Section 5 we present an extensive evaluation of CougaR with re-
spect to its performance for a wide range of parameter settings. In
Section 6 we present related work and we experimentally compare
our protocol against a number of state-of-the-art dissemination
protocols for blockchain systems. Finally, Section 7 concludes the
paper.

2 EPIDEMIC DISSEMINATION BACKGROUND
Epidemic protocols for data dissemination have been extensively
studied in the past, leading to the identification of push and pull
as the two main representatives. Both methods assume that every
node may initiate communication to peers selected uniformly at
random out of all other participating nodes.

2.1 Push-based Dissemination
In push-based dissemination, when a node receives a message it
has not seen before, it instantly forwards it to a number of other
nodes, which in turn do the same. Due to the reactive nature of this
operation, new messages spread exponentially fast to a significant
portion of the network.

The push paradigm is very efficient in the early stages of dissem-
ination, when most nodes are still unaware of the new message,
thus forwarding it to arbitrarily chosen nodes is likely to spread it
further. However, it suffers in later stages of dissemination, when
most nodes have already received this message, therefore forward-
ing it arbitrarily will most likely deliver it to an already informed
node, wasting network resources for no gain.

Even worse, as nodes have no control over who should forward
the new message to them, some nodes may never receive a given
message simply because no other node chose to forward it to them.
To alleviate this shortcoming, push-based dissemination schemes
often employ high levels of redundancy, so that the probability of
any one node being left out diminishes, at the cost of very high
network overhead. Kermarrec et. al [28] report that each node
should forward a message to around 15 other nodes to probabilis-
tically achieve complete dissemination, using network resources
that are in the order of 15-fold higher than the theoretical optimal
of delivering a message to each node once.

2.2 Pull-based Dissemination
In pull-based dissemination, nodes periodically contact arbitrary
other nodes to ask whether a new message is available, and to
pull it from them if so. Due to its proactive nature and periodic
polling, pull-based dissemination does not spread messages as fast
as its push-based counterpart, most notably in the early stages of
dissemination when most polls do not bring any news. However,
as each node is responsible for fetching new messages to itself,
eventually every single node receives the message, i.e., no node
is “left out”. Moreover, periodic polling messages aside, the pull-
based strategy is very network efficient, as every new message is
delivered exactly once to each node. Its moderate dissemination
speed, though, renders it inapt for use as-is in blockchain systems.

Table 1 summarizes the pros and cons of push-based and pull-
based epidemic dissemination, along with the key mechanisms
inducing each property. What we need is a dissemination model



CougaR: Fast and Eclipse-Resilient Dissemination for Blockchain Networks DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

Push Pull Key Mechanism
Dissemination
Speed ✓ fast ✗ slow Reactively forwarding

messages upon reception

Reliability ✗ no ✓ yes Having control over who
sends you messages

Network
Overhead ✗ high ✓ low Delivering messages once

per node
Table 1: Push vs. Pull

combining the advantages of both worlds. We describe this model
in the following section.

3 PROTOCOL DESIGN
Designing a data dissemination protocol involves two parts. First,
providing a link placement strategy, that is, deciding which links
should be established between nodes to be used for dissemina-
tion. Second, devising the dissemination model, that is, defining
the specific interactions between nodes that allow messages to be
efficiently and reliably disseminated over the available links.

In the following sections we define our proposed dissemination
model, followed by our proposed link placement strategy and the
detailed protocol operation.

3.1 Dissemination Model
Wemodel our dissemination network as an undirected graph𝐺 (𝑉 , 𝐸),
where𝑉 is the set of vertices, or nodes, and 𝐸 is the set of undirected
edges, or links, among nodes. Two nodes are called neighbors when
there is a link connecting them. Links are bidirectional, and each
node can arbitrarily select a number of other nodes (known as its
outgoing neighbors) to establish links to. Two neighbors are equally
responsible for forwarding new blocks to each other, irrespectively
of who took the initiative to establish the link between them. Thus,
blocks are being disseminated by being forwarded across links in
either direction.

When a node forwards a block to one of its neighbors, we refer
to the sending node as the upstream peer and to the receiving one
as the downstream peer. In the context of another block, their roles
may be reversed, should the block traverse their link in the opposite
direction.

Our dissemination model borrows from both the push-based and
the pull-based models to achieve the best of both worlds. It adopts
reactive message forwarding from the push-based model to cater
for fast dissemination, and policies from the pull-based model to
guarantee reliability and to keep network overhead low (Table 1).

More specifically, with respect to reactive message forwarding,
when a node validates a new block it immediately advertises it to
all its neighbors. This behavior, attributed to the push-based model,
satisfies the first mechanism of Table 1 and constitutes the key
ingredient for fast, reactive dissemination. In contrast, links are
established in a proactive manner, asynchronously with respect to
the dissemination of blocks, as discussed in Section 3.2.

Link bidirectionality helps alleviate awell-known reliability issue
associated with selecting links exclusively in a single direction.
If nodes select only their downstream peers (e.g., as in the push

Upstream
Peer

Downstream
Peer

ACKheader getBody body ACKbody...

k RTTs
header

validation
time

body
validation

time

Figure 1: CougaR’s forwarding scheme

model), a node may be left without any upstream peers, failing
to receive blocks. Likewise, if nodes only select their upstream
peers, some nodes may be left without downstream peers, failing
to disseminate blocks they produce. By establishing that every
single node is entitled to set up a number of links to nodes of its
choice, and that these links are used for propagating blocks in both
directions, no single node is left without downstream or upstream
dissemination paths. This satisfies the second key mechanism of
Table 1, guaranteeing that for any arbitrary node communication
can flow in both directions: from it and to it.

Finally, with respect to keeping network overhead low (Table 1’s
third mechanism), we adopt a two-step block forwarding scheme
that gives the receiving node control on howmany copies of a block
it wants to receive. A node acquiring a new block forwards only a
digest of the block (rather than the block itself) to all its neighbors,
letting each of them individually decide whether it would also like
to be sent the actual block, on demand. It is, thus, the receiver’s
decision to pull the actual block from one or more of the neighbors
that provided the corresponding digest.

Although this is a generic mechanism for keeping network over-
head low, the specific anatomy of blocks can be leveraged to further
optimize the whole process. Blocks consist of two parts, a header
and a body. The header is small1 and can be safely assumed to fit
within a single IP packet. The body is generally orders of magnitude
larger2. In our model, the header itself serves as the block digest.
First, the sending node already has the header; there is no need
for any extra digest to be produced on demand. Second, and most
importantly, the receiving node can perform a validity check on
the header before requesting the actual block body, diminishing
the effect of DoS attacks that try to spread invalid blocks. Upon
receiving the actual block body, a node performs a complete valid-
ity check for all transactions of the block, and provided the check
succeeds the node is ready to start forwarding it further to its own
neighbors (modulo the one it received it from) in the same way.
Figure 1 illustrates CougaR’s forwarding scheme, requiring 𝑘 round
trips for the body of the propagated block to be received.

3.2 Link Placement Strategy
Fast dissemination at a global scale is a two-faceted endeavour.
First, a new block should be disseminated fast and exhaustively at
a local scope, harnessing the low-latency links of geographically
proximal locations and ensuring that every single nearby node
receives the block through a fast, low-latency, local path. Second, a

1The header is 80B in Bitcoin and below 1KB in Ethereum and Cardano
2The body is up to 2MB in Bitcoin and in the order of 30KB in Ethereum and Cardano



DEBS ’22, June 27–30, 2022, Copenhagen, Denmark E. Kolyvas and S. Voulgaris

Figure 2: Dissemination overview: Blocks should be propa-
gated to a few nearby and to a few distant nodes.

dissemination algorithm should also encompass a global outlook,
managing to spread the news fast to distant locations.

Intuitively, a block generated in Amsterdam should reach a node
located in Zurich fast, over local links, rather than over a long-
distance path that first visits Sydney. At the same time, the node in
Sydney should also receive the block relatively fast, over a path that
contains a direct shortcut from somewhere around Amsterdam to
somewhere in Australia, rather than waiting for the block to slowly
cross all of Europe and Asia over many local dissemination steps.

Figure 2 illustrates an overview of the proposed strategy. Blocks
should be forwarded both across local, low-latency links, and dis-
tant, long-range ones. This brings up a fundamental question: how
to pick short-range and long-range links.

Kleinberg [31] defines a small-world model that facilitates effi-
cient routing over short paths in a large network of nodes without
global knowledge. Although routing and dissemination are different
problems, we could leverage the observations on routing to build
overlays for efficient dissemination. However, Kleinberg’s model
assumes nodes organized in a regular grid structure, which does
not reflect the actual Internet topology. Additionally, this model
relies on the reliable measurement of nodes’ distances, and on es-
tablishing links mostly to close nodes by also to fewer nodes of
increasingly higher distances. Explicitly selecting distant nodes,
though, involves two risks. First, by deterministically opting for
highest-latency nodes as neighbors, nodes located in isolated areas
(e.g., remote islands in the middle of an ocean), will result into a
highly biased topology and link distribution, with a very high num-
ber of links to them. Second, and even worse, as being a “distant”
node can easily be emulated by merely delaying all communication,
malicious nodes could easily take advantage of this to attract links
from the entire network, something we want to prevent at all costs.
In contrast, the property of being “close” to a given node cannot be
faked.

In our proposed protocol, we form links based on metrics that
cannot be faked. Namely, each node establishes links to a number
of other nodes out of the following two sets:

• Close neighbors: These are nodes exhibiting low network
latency to each other. Intuitively, such nodes tend to be ge-
ographically close to each other, although our protocol is
location agnostic and is concerned exclusively with network
latency.

• Random neighbors: These are neighbors picked uniformly
at random out of all participating nodes. The rationale be-
hind this decision is that our protocol does not demand a
multitude of nodes at each distant region, but rather just a
few sporadic representatives. Therefore, if every node for-
wards a block across a few random links, the block should
quickly get widely dispersed across the world, albeit at a
sparse density. Forwarding, subsequently, to close neigh-
bors bridges the gap, turning a block’s sparse distribution
into a dense, exhaustive dissemination reaching every sin-
gle participating node across the globe. Last but not least,
placing random links creates overlays resembling random
graphs, which are known for their low diameter and extreme
resilience to failures.

Turning the dissemination model and link placement strategy
detailed above into a protocol able to operate in a global-scale
distributed environment is a non-trivial task. A number of issues
should be taken into account, most notably the crucial adaptivity
and self-healing features to let it operate flawlessly in dynamic con-
ditions and arbitrary failures inherent in real-world settings. Such
conditions include joining and leaving nodes, fluctuating network
performance, and dynamic node load.

3.3 The CougaR Protocol
We propose an adaptive decentralized protocol, which works as
follows. Each node establishes 𝐶 + 𝑅 links to nodes of its choice
and measures their latencies by a number of ping messages. Pe-
riodically, a node discards its 𝑅 most distant neighbors, replacing
them by 𝑅 randomly picked ones. In case multiple neighbors are
close to the node, not sufficiently separated in the latency space,
it picks one of them at random. Each node 𝑣 is also free to impose
a locally determined degree limit of 𝑀𝑣 (with 𝑀𝑣 > 𝐶 + 𝑅) links
in total (including the 𝐶 + 𝑅 links established by itself), reflecting
𝑣 ’s bandwidth and ability to handle a number of connections in
parallel. That is, if a node 𝑢 attempts to establish a link to a node
𝑣 whose degree limit 𝑀𝑣 has been reached, 𝑣 refuses and 𝑢 picks
another node at random. Algorithm 1 shows the pseudocode of our
link placement algorithm.

The network overlay emerging from this simple decentralized
protocol possesses a number of desirable properties. First, as each
node establishes 𝑅 bidirectional links to random other nodes (not
counting the𝐶 links to its closest neighbors, or links established by
other nodes to oneself), the resulting overlay has far more edges
than the respective family of 𝑅-regular random graphs, which are
known to be a.a.s. connected3 for 𝑅 ≥ 3 [18]. Therefore, the re-
sulting overlay is infinitely scalable with respect to connectedness.
Second, as each node has a lower degree bound of 𝐶 + 𝑅 bidirec-
tional links, no node can be isolated, as these links alone account for
𝐶 + 𝑅 downstream and upstream dissemination paths. Third, each
node’s degree also has an explicit upper bound, which prevents
the (accidental or intentional) scenario of a node ending up with
too many connections, rendering it unable to serve them all in an
efficient manner. Last, but not least, the periodic rejuvenation of a
node’s neighbor set helps it adapt to dynamic conditions, replacing
non-responsive or distant nodes by randomly picked ones, and to
3“asymptotically almost surely” connected



CougaR: Fast and Eclipse-Resilient Dissemination for Blockchain Networks DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

Algorithm 1 Link Placement Algorithm
1: // PSS = the underlying peer sampling service
2: // responsive = is both alive and able to handle another connection
3:
4: // Rejuvenate node’s outgoing neighbor set (ONS)
5: loop periodically
6: for all node 𝑣 ∈ 𝑂𝑁𝑆 do
7: measure the RTT to node 𝑣
8: end for
9:
10: while 𝑂𝑁𝑆.𝑠𝑖𝑧𝑒 > 𝐶 do
11: remove the node with the highest RTT from the 𝑂𝑁𝑆

12: end while
13:
14: while 𝑂𝑁𝑆.𝑠𝑖𝑧𝑒 < 𝐶 + 𝑅 do
15: pick a random node 𝑣 from 𝑃𝑆𝑆

16: if 𝑣 is responsive then
17: add 𝑣 to the 𝑂𝑁𝑆

18: end if
19: end while
20: end loop

maintain links to nearby neighbors of low network latency. In effect,
at any given time a node maintains links to 𝐶 nodes of the close
neighbors set and 𝑅 nodes of the random neighbors set, as defined
in Section 3.2.

Assuming that latency proximity cannot be faked by the attacker,
and that the underlying peer sampling service [27] can provide
nodes with a truly unbiased random set of peers, CougaR is an
eclipse-resistant protocol as attackers have no means of arbitrarily
manipulating the set of established connections. That is, neither of
the “close” and “random” properties can be faked. We also assume
the presence of an effective third-party defense mechanism against
sybil attacks, so that a physical node cannot acquire an unlimited
number of identities.

Block propagation follows the dissemination model detailed in
Section 3.1. A node acquiring a new block forwards its header to
all its neighbors. Upon receiving a header from a neighbor, a node
validates it locally and subsequently requests the corresponding
body from that neighbor. Should more neighbors advertise the same
header before the node has and validated the body in question, the
node may spawn additional body requests in parallel.

CougaR introduces parameter 𝑃 , controlling the degree of paral-
lelism by setting themaximumnumber of body requests that may be
pending on behalf of a node for a given block at any given moment.
Setting 𝑃 to its lowest value, 1, results into the most bandwidth-
sensitive setup, known as the conservative policy, where a node
requests a body only from a single neighbor, the one that delivered
the respective header first. On the other end, setting 𝑃 equal to a
node’s number of neighbors leads to the greedy policy, in which a
node requests the block from all nodes that sent it the respective
header, until a download completes and the received block has been
validated. Intermediate values of 𝑃 offer the flexibility to fine-tune
the trade-off between bandwidth conservation on the one side, and
faster download speed with higher redundancy on the other.

4 EXPERIMENTAL SETUP
We split our evaluation up into two parts. Section 5 evaluates our
protocol in a wide range of parameter settings. Section 6 compares
CougaR against the state-of-the-art, while discussing its novelty
and differences in comparison to related work. The experimental
setup presented in the current section applies to both parts.

All evaluation was performed in the Peer-Net Simulator [12], a
discrete-event simulator for P2P protocols written in Java, as a fork
of the popular PeerSim simulator [42], able to execute protocols
not only in simulation mode but also in real networks.

In all evaluation, the notation C𝑥-R𝑦 denotes a configuration
with 𝑥 close and 𝑦 random outgoing links established by each node.

4.1 Topologies and Network Latencies
Obtaining realistic measurements dictates the use of realistic data.
Network latencies play a central role to the accuracy of our pro-
tocols’ assessment. Therefore, we used the following method to
compile a dependable real-world latency trace.

First, we acquired the latency trace made publicly available by
WonderNetwork [44]. This trace reports the round-trip times across
all pairs of around 250 servers distributed across 87 countries in all
continents, measured repeatedly for over two weeks, in November
2021. A worth-mentioning detail about this latency trace is that it
is asymmetric. That is, the time it takes for a message to be sent
from node A to node B is not necessarily equal to the time it takes
for the message to be sent from node B to node A.

Second, we collected the geographic locations of nodes for Bit-
coin4, Ethereum5, and Cardano6.

Then, wemapped each node to its closestWonderNetwork server
by estimating distances based on polar coordinates. As expected,
more than one nodes could be mapped on a single WonderNetwork
server, corresponding to nodes operating in the same city (or possi-
bly datacenter). This resulted into three distinct datasets, differing
in how many times they included each WonderNetwork server,
reflecting the geographic distribution of nodes in the respective
blockchain.

Finally, we projected the three aforementioned datasets to three
new datasets of 16,000 nodes each, maintaining a proportional node
distribution. These latency datasets were used to run experiments in
our evaluation. However, due to space limitations, we only present
Bitcoin topology results. Ethereum and Cardano node topologies
present very similar results, and have, thus, been omitted.

4.2 TCP Considerations
We assume that nodes communicate over the TCP protocol. In order
to acquire more accurate estimates of block transfer times, we take a
quick look at TCP’s operation, notably on its congestion avoidance
mechanism.

TCP is a reliable, connection-oriented communication proto-
col that allows bidirectional communication between two nodes.
When two nodes establish a TCP connection, they set (among other
things) an initial window size for congestion avoidance in each
direction. This typically corresponds to a small multiple of the MSS

4https://bitnodes.io/
5https://ethernodes.org/
6https://adapools.org/

https://bitnodes.io/
https://ethernodes.org/
https://adapools.org/


DEBS ’22, June 27–30, 2022, Copenhagen, Denmark E. Kolyvas and S. Voulgaris

 0.1

 1

 10

 100

 

R4 (random only)
C1 R3
C2 R2
C3 R1
C4 (close only)

 0.1

 1

 10

 100

U
n
in

fo
rm

e
d

 n
o
d

e
s 

(%
)

R8 (random only)
C2 R6
C4 R4
C6 R2
C8 (close only)

 0.01

 0.1

 1

 10

 100

 0  200  400  600  800  1000  1200

 

Dissemination time (msec)

R16 (random only)
C4 R12
C8 R8
C12 R4
C16 (close only)

Figure 3: Selecting all random links (R, dark blue dashes) or all close links (C, dark yellow lines) yields the worst performance
irrespectively of the node degree. Mixing random and close links (faded shades) gradually speeds up dissemination. Adopting
equal shares of both (red dots) always provides the fastest (or practically as good as the fastest) dissemination.

(Maximum Segment Size, i.e., the maximum number of bytes TCP
can fit in a single IP packet, with a default value of 536). This win-
dow size dictates up to how many bytes can be sent by the sender
before receiving an acknowledgement from the receiver. That is,
when the sender needs to send data to the receiver, it sends a small
number of packets back-to-back, in one go. Upon receiving an ac-
knowledgement, the sender infers that there was no congestion
along the path to the receiver, so it increases its window size typ-
ically by some fixed amount of bytes (additive increase). Should
an acknowledgement get lost or delayed, the sender assumes there
is congestion, so it decreases the window size to a fraction of its
current value (multiplicative decrease).

In terms of the time it takes to transfer 𝐿 bytes from a sender to a
receiver, if 𝐿 is smaller than the initial window size all 𝐿 bytes will
be sent in a single batch of packets, taking around RTT/2. Else, part
of the 𝐿 bytes will be sent on the first batch, to which the receiver
will respond by an acknowledgement (ACK), which will trigger the
sender to transmit the second batch of packets. The time for the
ACK to travel back to the sender and the next batch to propagate to
the receiver is yet another RTT. In general, a data chunk requiring
an extra 𝑘 batches to be transferred on top of the initial batch, will
take 1

2 + 𝑘 RTTs to complete (see Figure 1).
TCP connections are established by a three-way handshake, asyn-

chronously to block dissemination, and are kept alive for as long as
the respective nodes remain neighbors. As different TCP implemen-
tations use different initial window sizes and increment/decrement
steps, our experiments are concerned with how many extra RTTs
are needed for transferring a block between two nodes, rather than
with the exact number of bytes transferred in each batch.

5 STANDALONE EVALUATION
We evaluate CougaR by investigating its performance across a
wide range of parameter settings, including alternative options of
the link selection policy, different node degrees, a range of block
validation delays and block sizes, and different levels of parallelism,
as presented in the following sections.

5.1 Link Selection: Close vs. Random
The first parameter to examine was the effect of the link selection
policy, by means of the ratio of close/random links established by
nodes.We ran a number of experiments to evaluate all combinations
of close and random links for different node (outgoing) degrees. In
these and all following experiments, unless otherwise stated, we
fixed the header and body validation delays to 5msec and 50msec
per node, respectively, as reported for Bitcoin7.

Figure 3 shows the progress of dissemination in the course of
time elapsed since a block’s generation, by indicating for each point
in time the percentage of nodes that have not yet received and
validated the respective block. The figure contains three plots, cor-
responding to 4, 8, and 16 links per node, respectively. Each line
corresponds to a distinct experiment and shows the average of
the dissemination of 100 blocks originating at uniformly randomly
chosen miners for the Bitcoin node topology. Dark blue dashes rep-
resent random only setups, while dark yellow lines represent close
only setups. Gradually fading colors indicate the gradual mixing
with links of the alternative type, while red dots correspond to the
equal sharing between close and random links.

We observe that, for all degrees checked, splitting the links evenly
between close and random ones tends to give either the fastest, or
negligibly off the fastest dissemination speed. Exclusive use of ran-
dom or close links, on the other hand, yields the worst performance
in all cases. We also observe that, in any node degree, the setups
involving only close nodes fail to reach all nodes, as the network
becomes disjoint into disconnected components due to the nodes’
greedy policy to team up exclusively with nearby nodes.

5.2 Link Selection: Average Node Degree
The next parameter to investigate was the effect of the average node
degree, that is the number of links each node is entitled to establish
with its peers. We know that in Bitcoin every peer establishes 8
outgoing connections to a random set of peers, while peers set an

7https://statoshi.info/d/000000003/function-timings

https://statoshi.info/d/000000003/function-timings


CougaR: Fast and Eclipse-Resilient Dissemination for Blockchain Networks DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  200  400  600  800  1000  1200

U
n
in

fo
rm

e
d

 n
o
d

e
s 

(%
)

Dissemination time (msec)

C2-R2
C3-R3
C4-R4

C10-R10
C20-R20

theoretic optimal

Figure 4: Dissemination time vs Node degree

upper limit of 117 incoming connections each [41]. In Ethereum,
each peer maintains up to 25 connections, up to 13 of them being
outgoing connections8. In Cardano, each node establishes 5 to 20
outgoing connections9.

Figure 4 shows the dissemination progress in time for a number
of different node degrees in the Bitcoin topology. There is a trade-off
while tuning the number of links per node: A higher number of out-
going connections per node results into faster dissemination speed,
however we need more bandwidth to maintain these connections.
Additionally, we observe that the benefits of further increasing
the node degree become negligible after some point. For example,
switching from four connections (C2-R2) to six connections (C3-R3)
has a greater impact in dissemination speed than switching from
20 connections (C10-R10) to 40 (C20-R20).

In addition, Figure 4 plots a theoretic optimal. This theoretic
optimal corresponds to an imaginary scenario in which every node
has unlimited resources and is able to forward every block to all
other nodes in a single hop. By comparing the performance of the
40-connections scenario (C20-R20) to that of the theoretic optimal
(16K connections per node and unlimited bandwidth) we see that
they lie within the same order of magnitude. Indeed, the former
reaches 95% of the network only 1.44 times slower than the latter.
This constitutes a strong indication that there is not much to gain
by pushing node degree beyond a certain level.

Consequently, we consider Bitcoin’s choice of letting nodes select
8 connections each a reasonable one, and we fix this value for the
rest of the paper.

5.3 Effect of Block Validation Delay
As explained in Section 3.1, a node acquiring a block does not push
it further until it has locally validated it. This is done to prevent the
propagation of malformed blocks in the network. The validation
process involves a series of checks both on the header and on the
body of each block, and takes non-negligible time to perform.

Header validation checks whether the header satisfies the respec-
tive Proof-of-Work or Proof-of-Stake eligibility criteria, whether

8We consider geth, the most prevalent Ethereum client.
9We consider Cardano Shelley implementation.

C0-R8 C1-R7 C2-R6 C3-R5 C4-R4 C5-R3 C6-R2 C7-R1
 0

 40

 80

 120

 160

 200

 0

 20

 40

 60

 80

 100

 120

 140

 160

Link selection policy

Va
lid

at
io

n 
de

la
y 

(m
se

c)

R
e
la

ti
v
e
 d

is
se

m
in

a
ti

o
n
 t

im
e

9
5

th
 p

e
rc

e
n
ti

le
 o

f 
n
o
d

e
s

(m
se

c)

Figure 5: Relative dissemination time among all link selec-
tion policies and validation delays on the 95th percentile of
nodes. Red circles indicate the link selection policies that are
within 10msec off the optimal one, per validation delay.

the header links to a valid past header on the chain, whether the
timestamp is valid, and so on. Typically these constitute a fixed
number of checks and require a short amount of time. We fixed the
validation delay for headers to 5msec for all our experiments as
the processing time of the header is usually independent of the size
and the processing time of the body.

Body validation, on the other hand, depends on the number of
transactions in a given block and on their respective complexity.
A node has to check each individual transaction of a block by
confirming its syntactical correctness and by verifying its execution
validity. Transactions involving smart contract calls can prove far
more CPU intensive compared to those that simply transfer assets
between wallets. The aggregated effect of sequential validations
across multi-hop dissemination paths can significantly increase the
total dissemination time.

This brings up the following question: Does the per-node valida-
tion delay have an effect on which link selection policy provides
the optimal results?

We ran experiments for an extended set of validation delays and
close/random ratio combinations, for node degrees ranging from 6
to 20, all of which indicate that the equal splitting of links between
close ones and random ones always yields the optimal (or negligibly
close to the optimal) performance.

Figure 5 shows one representative of these sets of experiments,
namely the one for 8 links per node and body validation delay
ranging from 10 to 200msec for the Bitcoin node topology. We
measured, for each validation delay, the time each combination of
close and random links took to disseminate blocks to 95% of the
nodes, on average. Presented times are relative to the dissemination
time of the fastest link selection policy across the same validation
delay. That is, for each validation delay we identified the fastest dis-
semination time, and we subtracted it from the dissemination times
of all link selection policies, to highlight their relative performance.

Red circles highlight those link selection policies that perform
best or are within 10msec off the best, per validation delay. It is



DEBS ’22, June 27–30, 2022, Copenhagen, Denmark E. Kolyvas and S. Voulgaris

C0-R8 C1-R7 C2-R6 C3-R5 C4-R4 C5-R3 C6-R2 C7-R1
 0

 4

 8

 12

 16

 20

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

Link selection policy

Bo
dy

 R
TT

s

R
e
la

ti
v
e
 d

is
se

m
in

a
ti

o
n
 t

im
e

9
5

th
 p

e
rc

e
n
ti

le
 o

f 
n
o
d

e
s

(m
se

c)

Figure 6: Relative dissemination time among all link selec-
tion policies for each number of body RTT transfers on the
95th percentile of nodes. Red circles indicate the link selec-
tion policies that are within 10msec off the optimal one, for
each number of RTTs.

clear that the policy pertaining to the equal sharing of close and
random links can be trusted as an optimal pick independently of
the validation delay.

Note that the link selection policy of close links only (C8-R0)
is not shown in this plot, as when nodes focus exlusively on their
nearby neighbors the emerging overlay is seggregated into a num-
ber of disjoint components, obstructing dissemination altogether.

5.4 Effect of Block Size
In this section we focus on different block size scenarios, and we
investigate how they affect the optimal link selection policy. We
start by assessing their effect on the time required to transfer a
block from one node to another.

Let RTT be the round-trip time between two nodes,𝐴 and 𝐵, and
let 𝐴 have a block it wants to forward to 𝐵. Per our dissemination
model (Section 3.1) this transfer will take place in two steps. First
𝐴 will forward the header to 𝐵, and if 𝐵 has not already received
the block body from another source it will send back to 𝐴 a request
to pull the body, which 𝐴 will subsequently send to 𝐵. This will
account for a total time of at least 1.5 RTT, assuming the block body
is small enough to fit in the initial TCP window between 𝐴 and 𝐵.
As outlined in Section 4.2, TCP will split up the body transfer into
𝑘 (with 𝑘 ≥ 1) discrete batches of packets, depending on the body
size and the TCP window size adaptation policies.

To assess the effect of the extra RTTs incurred by larger blocks on
dissemination, we ran experiments ranging the body RTTs required
per transfer from 1 to 19. For each RTT value, we ran a number of
experiments for all possible combinations of close and random links,
for node degrees ranging from 6 to 20. In all these experiments
we observed that adopting an equal share of close and random
links gives either the best or negligibly off the best results, thus
confirming that our proposed link selection policy is a good choice.

Figure 6 (similar in style to Figure 5) shows a representative set of
these experiments, namely the one for 8 links per node. The figure
reports the results of experiments for each combination of link
selection policy and RTTs-per-transfer, when dissemination reaches
95% of the nodes. Presented times are relative to the dissemination

 0

 5

 10

 15

 20

 25

 30

 0  10  20  30  40  50  60  70  80  90  100

R
e
d

u
n
d

a
n
t 

b
o
d

y
 d

o
w

n
lo

a
d

s 
p

e
r 

b
lo

ck
 d

e
liv

e
ry

Block deliveries (%)

 50 msec validation delay, 1 body RTTs
100 msec validation delay, 1 body RTTs
200 msec validation delay, 1 body RTTs
 50 msec validation delay, 3 body RTTs

100 msec validation delay, 3 body RTTs
200 msec validation delay, 3 body RTTs

Figure 7: Greedy approach: Redundant body downloads per
block delivery, for all deliveries of a total of 100 blocks to all
16K nodes.

time of the fastest link selection policy across a given RTTs-per-
transfer value.

Red circles highlight those combinations in the parameter space
that are either optimal (for a given RTTs-per-transfer value) or are
no more than 10msec off the optimal performance.

For the rest of the evaluation we consider only setups where the
links each node is allowed to establish are equally split between
latency-wise close peers and random peers.

5.5 Bandwidth Efficiency
Many blockchain protocols implement various methods to keep
bandwidth utilizationwithin reasonable levels. Preventing thewaste
of network resources is not only important for the network itself,
but also for reducing the unnecessary load on blockchain nodes
and letting them act and communicate more rapidly when needed.

Our protocol adopts a block relay scheme in which blocks are
forwarded in two steps: the header is pushed first; the body is
pulled then, on demand. It is, thus, the receiving node that is in
control of which and how many of its neighbors to pull a body
from in parallel, pulling from the first node only (the conservative
approach) to pulling from all until a download completes and the
received block has been validated (the greedy approach).

In order to assess the extra bandwidth consumed by the greedy
approach, we carried out a number of experiments both using the
greedy and the conservative approaches. Each experiment involved
1,600,000 block deliveries: 100 blocks, each being delivered to all
16,000 nodes. We recorded the number of times a body was pulled
by each node, on average. Figure 7 reports the number of redun-
dant (i.e., more than one) body pulls per block delivery, with block
deliveries sorted in a descending redundancy order.

Three validation delay values (50, 100, and 200msec) and two
block sizes (needing 1 and 3 RTTs to be transferred) were consid-
ered, resulting into six scenarios. We notice a substantial degree of
redundancy in all six scenarios, with larger block sizes resulting
into slightly more redundant pulls. This makes sense, as larger



CougaR: Fast and Eclipse-Resilient Dissemination for Blockchain Networks DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  10  20  30  40  50  60

Ti
m

e
 s

a
v
in

g
s 

p
e
r 

b
lo

ck
 d

e
liv

e
ry

 (
m

se
c)

Block deliveries (%)

 50 msec validation delay, 1 body RTTs
100 msec validation delay, 1 body RTTs
200 msec validation delay, 1 body RTTs
 50 msec validation delay, 3 body RTTs

100 msec validation delay, 3 body RTTs
200 msec validation delay, 3 body RTTs

Figure 8: Greedy vs Conservative: Absolute body transfer
time gains per block delivery, for all deliveries of a total of
100 blocks to all 16K nodes.

blocks take longer to be delivered, in which period the receiver gets
to send pull requests to more of its neighbors.

In the worst case, all 6 combinations tend to request over 15 extra
times the block body, which is in fact the average node degree, as
each node connects to 8 peers, so (on average) another 8 nodes
connect to it.

Figure 8 presents the respective time savings each individual
of the aforementioned 1.6M block deliveries observed with the
greedy approach in comparison to the conservative one. Scenarios
exhibiting large blocks gain more performance benefits from the
greedy approach.

Figure 9 presents the evolution of dissemination by presenting
the percentage of nodes remaining uninformed in the course of time
for the greedy and the conservative approaches. The benefit gained
by the greedy approach appears to be constant irrespectively of
the per-node validation delay (top). However, the number of extra
RTTs required for larger block sizes has a clear correlation to the
performance gains earned by the greedy approach (bottom).

To explore the trade-off between high dissemination perfor-
mance and low bandwidth usage, we investigated the ideal number
of body download requests a node should spawn in parallel. More
specifically, we executed the greedy version of the protocol (i.e.,
with an unlimited number of download requests until a down-
load completes and the received block has been validated), and we
recorded which neighbor was the one that succeeded in delivering
the body first, in terms of the order it was asked. I.e., whether it was
the neighbor asked first, second, third, and so on. The respective
distribution is presented in Figure 10.

In Figure 10 we observe that an overwhelming percentage of
downloads are served successfully by the first four upstream peers
asked. Therefore, we choose to fix CougaR’s parallelism parameter
𝑃 to 4 for the comparison to related work presented below.

6 EVALUATION AGAINST RELATEDWORK
Having completed the standalone evaluation of CougaR, we now
proceed to comparing it against state-of-the-art baseline algorithms.

 0.1

 1

 10

 100
 50 msec validation delay, conservative

100 msec validation delay, conservative
200 msec validation delay, conservative

 50 msec validation delay, greedy
100 msec validation delay, greedy
200 msec validation delay, greedy

 0.01

 0.1

 1

 10

 100

 0  500  1000  1500  2000  2500  3000

U
n
in

fo
rm

e
d

 n
o
d

e
s 

(%
)

Dissemination time (msec)

1 body RTTs, conservative
3 body RTTs, conservative
5 body RTTs, conservative

1 body RTTs, greedy
3 body RTTs, greedy
5 body RTTs, greedy

Figure 9: Greedy vs Conservative: Dissemination evolution
over time

6.1 Related Work
A number of techniques have been employed in real systems or
proposed by the research community for block dissemination in
blockchain systems, presented in the following sections.

6.1.1 Random. The random connection algorithm is the simplest
and most widely deployed connection policy in blockchains. The
most notable example using this algorithm is Bitcoin. When boot-
strapping, a node is not aware of any other peers of the network.
It will use a DNS seeder to reach at least one of them. The node,
subsequently, gossips with the peer(s) it already knows to learn
addresses of additional peers and to advertise its own address. As
mentioned in Section 5.2, in Bitcoin each node establishes 8 outgo-
ing connections to randomly picked other nodes and accepts up to
117 incoming connections set up by other nodes. Just like CougaR,
the random connection algorithm is eclipse-resistant, provided a
peer sampling service that discovers an unbiased random set of
peers.

While randomly formed topologies are known for their low di-
ameter and resilience to failures, they suffer from suboptimal path
delays. This is due to the fact that they do not take other nodes’
latency-wise proximity into consideration. Thus, in large networks
nodes will choose, with high probability, distant neighbors, signifi-
cantly growing path delays.

6.1.2 Geographic. A simple heuristic, proposed in Perigee [38],
to improve the random connection algorithm is to take geographic
locations of nodes into account, assuming these can be inferred
through their IP addresses. Such a heuristic would pick some geo-
graphically close neighbors and some distant ones.

However, this algorithm has practical difficulties. First, since
many nodes (over half in Bitcoin [5]) connect through a Tor net-
work [15], IP addresses cannot be known. Second, with the help
of VPNs or proxies, one may present an IP address in an arbitrary
geographic region. As such a link selection algorithm is prone to
manipulation, it cannot be considered eclipse resistant.

In order to compare CougaR against this algorithm, we imple-
mented a protocol that establishes links based on nodes’ geographic



DEBS ’22, June 27–30, 2022, Copenhagen, Denmark E. Kolyvas and S. Voulgaris

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25

N
o
d

e
s 

(%
)

Rank of neighbor who delivered body first

 50 msec validation delay, 1 body RTTs
100 msec validation delay, 1 body RTTs
200 msec validation delay, 1 body RTTs
 50 msec validation delay, 3 body RTTs

100 msec validation delay, 3 body RTTs
200 msec validation delay, 3 body RTTs

Figure 10: Greedy approach: Which peer manages to send
the body first

locations. We split the nodes up into six sets based on the continents
they are located in: Africa, Europe, North America, South America,
Oceania, and Asia. Each node picks half of its neighbors randomly
among peers from the same continent and the other half randomly
among peers from different continents.

6.1.3 Structured Overlay. A recent work [47] proposes a broad-
cast protocol based on the Kademlia [40] DHT. Harnessing DHT
properties, it achieves dissemination in a logarithmic number of
hops. However, its performance is only slightly better compared to
systems based on random topologies of equal node degree, which
does not justify the extra overhead of building and maintaining
Kademlia.

In Section 6.2 we compare such an algorithm with CougaR. Note,
however, that CougaR adopts a constant node degree indepen-
dently of the network size, whereas in Kademlia node degrees grow
logarithmically with the size of the network. We consider such a
structured topology as eclipse resistant under two conditions: (a)
each node has an unforgeable DHT identifier, and (b) the overlay
has a mechanism to locate the alive node whose ID is closest to a
desired point in the ID space.

Ethereum operates based on the Kademlia DHT too. In Ethereum,
however, Kademlia is only used as a membership management pro-
tocol, i.e., to discover other nodes and to pick neighbors, while block
dissemination is performed over an unstructured P2P overlay in an
epidemic fashion similar to that of Bitcoin. Nodes establish up to
13 outgoing connections and accept up to 12 incoming connections
each. These connections are used to disseminate both transactions
and new blocks.

6.1.4 Score-based. Perigee [38] proposes a scoring function to
assess every neighbor based on its ability to deliver blocks, and
retains the “best” subset of neighbors at regular intervals. Each
node also periodically connects to random new peers to explore
potentially better-connected neighbors. Each node maintains 8
outgoing connections and accepts up to 20 incoming connections.

A pitfall of such a protocol is its defense against eclipse at-
tacks [26, 39], as an adversary could easily dominate a victim’s
connections by providing well-connected peers. A well-known way

 0.1

 1

 10

 100

CougaR
R8 (random only)
Geographic
Kademlia
Perigee

 0.01

 0.1

 1

 10

 100

 0  200  400  600  800  1000

N
o
t-

y
e
t-

re
a
ch

e
d

 m
in

in
g

 p
o
w

e
r 

(%
)

Dissemination time (msec)

CougaR
R8 (random only)
Geographic
Kademlia
Perigee

Figure 11: Protocol comparison with uniform mining power.
No failures (top), 10% block transfer failures (bottom).

of performing this attack is by an attacker skipping the block vali-
dation process in order to be the first to deliver new blocks to the
victim, and acquire a top score in its ranking. It only takes a hand-
ful of colluding nodes to dominate the scoring links of the victim.
Consequently, Perigee and similar protocols cannot be considered
eclipse resistant. Moreover, as we see in Section 6.2, it is still ques-
tionable how such a protocol can handle a moderate percentage
of block transfer failures that can confuse the scoring mechanism,
making it pick, in essence, peers at random.

6.1.5 BlockchainDistributionNetworks. Another line of work
proposes high-speed Blockchain Distribution Networks (BDNs) [1, 9,
30] to help nodes propagate blocks and transactions faster. These
solutions, however, are not fully decentralized and rely on a trusted
relay network. A malicious actor can potentially attack such net-
works by performing a person-in-the-middle attack. Besides that,
if a blockchain system accepts the trust assumptions made by such
proposals, our proposed protocol could leverage the proximity
(in terms of network latency) properties these systems provide
to achieve even faster dissemination.

6.2 Comparison to Related Work
We implement C4-R4 and we set the parallelism parameter 𝑃 = 4,
limitting the number of concurrent body pull requests to four:
two from our close-set and two from our random-set, starting by
requesting the body from the first two peers that delivered to us the
respective header from each set. To prevent malicious behavior [24],
we set a timeout on each body pull request equal to twice the
number of RTTs required to transfer the body (Figure 1). When this
timeout expires for a pull request, we send a new request to another
peer having advertised the respective header. Block delivery is
considered complete when we have received and fully validated the
body. From the remaining of this section we will assume CougaR
to be configured with this policy.

We compare CougaR with: (a) the random connection algorithm
(R8), in which every node connects with eight random nodes (Sec-
tion 6.1.1), (b) the geographic connection algorithm, in which every
node connects to four random nodes from the same continent and



CougaR: Fast and Eclipse-Resilient Dissemination for Blockchain Networks DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

 0.1

 1

 10

 100

CougaR
R8 (random only)
Geographic
Kademlia
Perigee

 0.01

 0.1

 1

 10

 100

 0  200  400  600  800  1000

N
o
t-

y
e
t-

re
a
ch

e
d

 m
in

in
g

 p
o
w

e
r 

(%
)

Dissemination time (msec)

CougaR
R8 (random only)
Geographic
Kademlia
Perigee

Figure 12: Protocol comparison with exponentially dis-
tributed mining power. No failures (top), 10% block transfer
failures (bottom).

four random ones from other continents (Section 6.1.2), (c) the struc-
tured overlay algorithm, based on Kademlia (Section 6.1.3), and (d)
Perigee (Section 6.1.4), which implements a scoring function that
lets nodes calibrate their neighbor selection every 100 blocks by
replacing the “worst” pair of peers (subset of size two, in Perigee
terminology) by two random nodes. As Perigee is an adaptive proto-
col, we ran the protocol for 12.8K blocks (128 rounds of 100 blocks
each) to let it converge before measuring our metrics, as suggested
in that paper. For each algorithm we collect the results taken from
the dissemination of 100 blocks, generated by random nodes.

Figure 11 considers a scenario with default values for all pa-
rameters. That is, 5 msec header validation delay, 50 msec body
validation delay, 1.5 RTTs for a block to be transferred (header →
pull-request → body), and a uniform mining power distribution
(i.e., each node is equally likely to generate a block). The upper part
plots the results when no transfer failures occur, while the lower
part plots the results when 10% of block transfers fail, to assess the
protocols’ behavior in the face of failures.

Figure 12 considers the same scenario, except for nodes’ mining
power (be it hashing power for PoW or stake for PoS) now following
an exponential distribution. The upper part reports the case of no
transfer failures, while the lower part reports the results when 10%
of block transfers fail. Block dissemination (vertical axis) is reported
in terms of the percentage of mining power reached. Obviously, in
the case of uniform mining power (Figure 11), this is equivalent to
the percentage of nodes reached.

Both uniform and exponential mining power distribution give
clear rankings of algorithm performance. As expected, Random
connectivity performs the worst in all cases. Kademlia and Geo-
graphic share the third and fourth positions, with Kademlia having
an edge when failures occur due to its structured topology. Perigee
comes closer to CougaR, mostly in the absence of failures. When
block transfers exhibit random failures, CougaR clearly outper-
forms Perigee. This is further emphasized for an exponential mining
power distribution, where Perigee performs equally to Kademlia.
This is due to Perigee’s scoring functions being sensitive to transfer
failures, in the presence of which it proposes sub-optimal nodes as
neighbors. In case of an exponential mining power distribution, this

phenomenon is even more prominent as the scoring function fails
to locate the relatively few peers generating most of the blocks.

An interesting fact that is clearly illustrated in Figure 11 and
Figure 12 and deserves to be highlighted, is the difference between
CougaR and Geographic. One could (wrongly) assume that picking
random long-distance and random short-distance links (i.e., the
Geographic heuristic) should be practically equivalent to CougaR’s
selection of close and random links. This is strongly disproven by
the performance comparison. The difference lies in the fact that it
is not geographic distance, but latency-wise proximity that CougaR
takes into account for link placement. Likewise, picking random
peers is not equivalent to picking explicitly distant peers either. As
an example of the inefficiency of the Geographic protocol, we can
think of a node located in Lisbon picking a neighbor in Tromsø as
a node from the same continent, while discarding a node in Rabat
as a node from a different continent.

Bandwidth consumption is yet another dimension that should be
highlighted. CougaR does not only outperform Perigee in terms of
dissemination speed, but also in terms of bandwidth consumption.
CougaR needs almost a constant small number of body deliveries
per node to achieve this performance, independently of the node
degrees. Perigee, on the other hand, requires nodes to request and
download the body of every single block from literally all their
neighbors who provided the respective header, carrying on even
after a body has been received and validated, in order to properly
rank them by means of the scoring mechanism.

Another difference between CougaR and Perigee lies in the con-
vergence time to reach their peak performance. CougaR converges
asynchronously with respect to block dissemination, as latency
measurements between nodes are independent of block propaga-
tion. On the other hand, Perigee needs many rounds, of hundreds of
blocks each, to converge and reach a reasonable performance. Thus,
CougaR provides a calibrated overlay almost from the beginning,
not after many thousands of blocks have been generated.

Last but not least, a very important advantage CougaR has to
offer over Perigee has to do with the security and the protection
against being eclipsed. In Perigee, an attacker can launch an eclipse
attack by providing blocks earlier than other nodes to the vic-
tim, thus dominating its set of neighbors. The only mechanism,
in Perigee, mitigating this attack is the selection of two random
neighbors, which, in case of eight outgoing connections per node,
constitutes the 25% of its links. The rest 75% of the links can be eas-
ily eclipsed [50]. In contrast, CougaR is by design shielded against
this attack vector, as nodes select their close neighbors prioritizing
on low network latency, a property that cannot be forged if the
attacker is not for real in network proximity to the victim.

Concluding this comparative evaluation, we consider CougaR
to be the winner as it combines the fastest relaying of blocks with
the highest security against eclipse attacks, outperforming other
protocols’ trade-off between speed and security in both these di-
mensions.

7 CONCLUSIONS
We presented CougaR: a simple but efficient, eclipse-resistant, de-
centralized protocol that decides which neighbors a node should



DEBS ’22, June 27–30, 2022, Copenhagen, Denmark E. Kolyvas and S. Voulgaris

connect to in order to reduce the block dissemination time in block-
chain networks. The two main ingredients of CougaR’s link selec-
tion policy are proximity, in terms of network latency, and ran-
domness, which is also crucial for maintaining the entire overlay
network in a single, connected, robust, and low-diameter compo-
nent. To the best of our knowledge, CougaR constitutes the best
solution in the trade-off between fast and secure (eclipse-resistant)
dissemination of blocks.

Along these lines we highlighted the importance of combining
close and random links, and we explored the ratio in which they
should be mixed. We also investigated the extent to which pushing
node degrees higher improves dissemination, and we concluded
that it is not the number of links that warrant a fast and reliable
dissemination, but rather their educated selection. Subsequently,
we investigated the trade-off between fast, reliable, and secure dis-
semination of blocks, and bandwidth consumption by tuning the
level of parallelism in body pull requests. Finally, we compared
CougaR against a set of representative state-of-the-art dissemina-
tion algorithms for blockchain networks, assuming both a uniform
and an exponential mining power distribution, both in error-free
and in faulty network settings.

ACKNOWLEDGMENTS
Work funded by Input Output Hong Kong (IOHK) in the context of
the “Eclipse-Resistant Network Overlays for Fast Data Dissemination”
project, aiming at optimizing and securing Cardano’s network over-
lay. We gratefully thank IOHK for their support, as well as IOHK’s
engineering team for fruitful discussions and valuable feedback.

REFERENCES
[1] Falcon, 2021. https://www.falcon-net.org/.
[2] Bip: 141, 2022. https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki.
[3] Bip: 152, 2022. https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki.
[4] Bitcoin-cash, 2022. https://bitcoincash.org/.
[5] Bitnodes, 2022. https://bitnodes.io/.
[6] Byteball, 2022. https://obyte.org/.
[7] Cardano, 2022. https://cardano.org/.
[8] Cosmos, 2022. https://cosmos.network/.
[9] Fibre, 2022. https://bitcoinfibre.org/.
[10] Iota, 2022. https://www.iota.org/.
[11] Liquidity network, 2022. https://liquidity.network/.
[12] Peer-Net Simulator, 2022. https://github.com/PeerNet.
[13] Raiden network, 2022. https://raiden.network/.
[14] Scalability, 2022. https://en.bitcoin.it/wiki/Scalability.
[15] Tor network, 2022. https://www.torproject.org/.
[16] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell,

Andrew Miller, Andrew Poelstra, Jorge Timón, and Pieter Wuille. Enabling
blockchain innovations with pegged sidechains. 2014.

[17] Iddo Bentov, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs of
stake. IACR Cryptol. ePrint Arch., 2016:919, 2016.

[18] Béla Bollobás. Random graphs. In Modern graph theory. Springer, 1998.
[19] Vitalik Buterin et al. A next-generation smart contract and decentralized appli-

cation platform. white paper, 3(37), 2014.
[20] Manuel MT Chakravarty, Sandro Coretti, Matthias Fitzi, Peter Gazi, Philipp Kant,

Aggelos Kiayias, and Alexander Russell. Hydra: Fast isomorphic state channels.
Cryptology ePrint Archive, 2020.

[21] Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin
network. In IEEE P2P 2013 Proceedings, pages 1–10. IEEE, 2013.

[22] John R Douceur. The Sybil Attack. In International workshop on peer-to-peer
systems, pages 251–260. Springer, 2002.

[23] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. Bitcoin-
ng: A scalable blockchain protocol. In 13th {USENIX} symposium on networked
systems design and implementation ({NSDI} 16), pages 45–59, 2016.

[24] Arthur Gervais, Hubert Ritzdorf, Ghassan O Karame, and Srdjan Capkun. Tam-
pering with the delivery of blocks and transactions in bitcoin. In Proceedings

of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pages 692–705, 2015.

[25] Yossi Gilad, RotemHemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of
the 26th Symposium on Operating Systems Principles, pages 51–68, 2017.

[26] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse
attacks on bitcoin’s peer-to-peer network. In 24th {USENIX} Security Symposium
({USENIX} Security 15), pages 129–144, 2015.

[27] Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermarrec, and
Maarten Van Steen. Gossip-based peer sampling. ACM Transactions on Computer
Systems (TOCS), 25(3):8–es, 2007.

[28] A-M Kermarrec, Laurent Massoulié, and Ayalvadi J. Ganesh. Probabilistic reliable
dissemination in large-scale systems. IEEE Transactions on Parallel and Distributed
systems, 14(3):248–258, 2003.

[29] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual
International Cryptology Conference, pages 357–388. Springer, 2017.

[30] Uri Klarman, Soumya Basu, Aleksandar Kuzmanovic, and Emin Gün Sirer.
bloxroute: A scalable trustless blockchain distribution network whitepaper. IEEE
Internet of Things Journal, 2018.

[31] Jon M Kleinberg. Navigation in a small world. Nature, 406(6798):845–845, 2000.
[32] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus

Gasser, and Bryan Ford. Enhancing bitcoin security and performance with strong
consistency via collective signing. In 25th {usenix} security symposium ({usenix}
security 16), pages 279–296, 2016.

[33] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via
sharding. In 2018 IEEE Symposium on Security and Privacy (SP), pages 583–598.
IEEE, 2018.

[34] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. In Concurrency: the Works of Leslie Lamport, pages 203–226. 2019.

[35] Colin LeMahieu. Nano: A feeless distributed cryptocurrency network. 2018.
[36] Sergio Demian Lerner. Dagcoin: a cryptocurrency without blocks. 2015.
[37] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and

Prateek Saxena. A secure sharding protocol for open blockchains. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 17–30, 2016.

[38] Yifan Mao, Soubhik Deb, Shaileshh Bojja Venkatakrishnan, Sreeram Kannan, and
Kannan Srinivasan. Perigee: Efficient peer-to-peer network design for block-
chains. In Proceedings of the 39th Symposium on Principles of Distributed Comput-
ing, pages 428–437, 2020.

[39] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. Low-resource eclipse
attacks on ethereum’s peer-to-peer network. IACR Cryptol. ePrint Arch., 2018.

[40] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information
system based on the xor metric. In International Workshop on Peer-to-Peer Systems,
pages 53–65. Springer, 2002.

[41] Andrew Miller, James Litton, Andrew Pachulski, Neal Gupta, Dave Levin, Neil
Spring, and Bobby Bhattacharjee. Discovering bitcoin’s public topology and
influential nodes. et al, 2015.

[42] Alberto Montresor and Márk Jelasity. Peersim: A scalable p2p simulator. In 2009
IEEE Ninth International Conference on Peer-to-Peer Computing, pages 99–100.
IEEE, 2009.

[43] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical
report, Manubot, 2019.

[44] Paul Reinheimer. A day in the life of the Internet (WonderProxy), 2020. https:
//wonderproxy.com/blog/a-day-in-the-life-of-the-internet/.

[45] Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart contracts.
White paper, pages 1–47, 2017.

[46] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-
chain instant payments, 2016.

[47] Elias Rohrer and Florian Tschorsch. Kadcast: A structured approach to broadcast
in blockchain networks. In Proceedings of the 1st ACM Conference on Advances in
Financial Technologies, pages 199–213, 2019.

[48] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. Spectre: A fast and
scalable cryptocurrency protocol. IACR Cryptol. ePrint Arch., 2016:1159, 2016.

[49] Yonatan Sompolinsky and Aviv Zohar. Phantom. IACR Cryptology ePrint Archive,
Report 2018/104, 2018.

[50] Matthew Walck, Ke Wang, and Hyong S Kim. Tendrilstaller: Block delay attack
in bitcoin. In 2019 IEEE International Conference on Blockchain, pages 1–9. IEEE,
2019.

[51] Jiaping Wang and Hao Wang. Monoxide: Scale out blockchains with asynchro-
nous consensus zones. In 16th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 19), pages 95–112, 2019.

[52] GavinWood. Polkadot: Vision for a heterogeneous multi-chain framework. White
Paper, 2016.

[53] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling
blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 931–948, 2018.

https://www.falcon-net.org/
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://bitcoincash.org/
https://bitnodes.io/
https://obyte.org/
https://cardano.org/
https://cosmos.network/
https://bitcoinfibre.org/
https://www.iota.org/
https://liquidity.network/
https://github.com/PeerNet
https://raiden.network/
https://en.bitcoin.it/wiki/Scalability
https://www.torproject.org/
https://wonderproxy.com/blog/a-day-in-the-life-of-the-internet/
https://wonderproxy.com/blog/a-day-in-the-life-of-the-internet/

	Abstract
	1 Introduction
	2 Epidemic Dissemination Background
	2.1 Push-based Dissemination
	2.2 Pull-based Dissemination

	3 Protocol Design
	3.1 Dissemination Model
	3.2 Link Placement Strategy
	3.3 The CougaR Protocol

	4 Experimental Setup
	4.1 Topologies and Network Latencies
	4.2 TCP Considerations

	5 Standalone Evaluation
	5.1 Link Selection: Close vs. Random
	5.2 Link Selection: Average Node Degree
	5.3 Effect of Block Validation Delay
	5.4 Effect of Block Size
	5.5 Bandwidth Efficiency

	6 Evaluation against Related Work
	6.1 Related Work
	6.2 Comparison to Related Work

	7 Conclusions
	References

