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ABSTRACT
High-performance real-time monitoring of the stock market data
stream is one of the challenging use cases of stream processing
systems. By monitoring real-time stock price patterns via high-
throughput event stream processing, real-time stock trading advice
can be generated. In this paper, we describe our implementation
of a system for the DEBS 2022 Grand Challenge to extract break-
out patterns from real-time stock market data. Breakout patterns,
based on exponential moving averages crossover events, indicate
potential bullish or bearish trends, giving investors insight and the
opportunity to buy or sell at optimal times. We report details of our
high-performance implementation to extract such patterns from a
real-time stream to generate stock trading advice event notification
outputs. Furthermore, we report the architectural design of our sys-
tem for parallel processing of data stream, which we implemented
from scratch using Python and Java programming languages.
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1 INTRODUCTION
The trading of stock shares can be triggered by high complex event
patterns that are specified based on patterns in the event stream
of the stock market. Complex patterns are are specified based on
the history of the event stream, for example, by utilizing moving
averages of stock prices and the trading volumes. The real-time
extraction of such complex patterns to trigger buy or sell trading
actions is the task of high-performance event stream processing
systems.

The 2022 DEBS Grand Challenge [5] describes a system imple-
mentation based on two specific queries on the stock market event
streams. The first query is defined to compute the Exponential
Moving Average (EMA) with two different smoothing factors of
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38 and 100. An exponential Moving Average is one of the moving
averages and is defined as follows:

EMAt =

{
Y0 t = 0
αYt + (1 − α)EMAt−1 t > 0

The coefficient α represents the degree of weighting decrease,
a constant smoothing factor between 0 and 1. For this challenge
α = 2

1+j where j is a smoothing factor with j ∈ {38, 100}. We use
EMA38 to refer to the exponential moving averagewith a smoothing
factor of 38 and EMA100 for a smoothing factor of 100.

Figure 1: An Example of Stock Price Fluctuations Over Time

Figure 1 illustrates an example of stock market price changes
over time. The graph shows 1000 events with different prices. Fig-
ure 2 depicts the values of the exponential moving average with
smoothing factors of 38 and 100.We can observe in Figure 2 how the
value grows exponentially and how the two EMA38 and EMA100
are different from each other.

Query 2 of the DEBS 2022 challenge [5] is specified based on the
results of Query 1. Each time that EMA38 breaks out of the value
of EMA100 a stock buy advice notification should be generated and
if EMA100 goes under the EMA38 a stock sell advice. For a further
detailed description of the DEBS 2022 Grand Challenge, we would
refer the readers to [5].

Figure 3 visualizes the same graph as we have in Figure 2 by
zooming into the graph (range 0 to 400 events on x-axis) to see
the values and their differentiations. One important observation in
Figures 3 and 2 is that EMA38 and EMA100 have a large difference
in the first 200 events. The reason for this difference is that the
exponential moving average is specified based on the history of
events to increase the value exponentially and requires a warm-up
phase. Based on this observation, one can improve the performance
of the Query 2 by skipping the first 200 events because EMA38 and
EMA100 still have a large difference.

The main system development challenge task is to design a sys-
tem that can process the stream of events with high throughput
and low latency. Many open source and commercial stream pro-
cessing systems are developed that one can use to develop this
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Figure 2: Example of Query 2 - Buy and Sell advice based on Breakout Patterns of EMA 38 and 100

challenge. Esper event stream processing system [3] is a system
that can detect complex events based on pre-defined temporal logic
patterns. In this task we do not have a complex pattern to extract
and computations are basic computations of EMA 38 and 100, fol-
lowing with a check of the values for Query 2 to submit a sell or
buy advice. Other systems like Apache Storm [1], Apache Spark
Streaming [8] or Apache Flink streaming [2] have been developed
to achieve high-scalability in data stream processing. Also, different
benchmarks are developed [7] which compare these systems with
each other regarding specific data stream processing tasks.

After considering all of the existing systems and their overhead
trade-offs, we decided to implement the DEBS Grand Challenge
from scratch, without using any of the existing systems like Apache
Spark or Flink. Most of these systems have a different target like
higher scalability than higher performance, so that they have a
large start-up delay and additional cluster management costs.

Some examples of the performance overheads that systems like
Apache Spark and Flink have are:

• Most of these systems are designed in a distributed cluster
computing setting which includes cluster managements like
communications between the master process/es and worker
processes. Many processes are started as JobManager and
TaskManager to coordinate different task executions.

• These systems are designed to optimize the trade-off be-
tween higher scalability and higher stream throughput/la-
tency performance. The described DEBS 2022 challenge does
not include a very large data stream that we would need to
design a high-scalable data stream processing system. But
our main system design goal is to achieve high throughput
and low-latency. Systems like Spark or Flink include internal
data processing pipelines including batch processing and
blocking data exchanges.

• Such systems use special types of control events, like check-
point barriers, watermarks signaling or iteration barriers
to provide guarantee of a FIFO order of events, to generate
snapshots of the data stream for example, or be able to do
stream recovery [4]. In our system we can make sure that
our stream processing is a stateful processing, and windows
are correctly generated from the stream batches. And no
additional internal batch generations are needed.

• The cluster stream processing systems have many config-
uration parameters which modify the performance stream
processing. For example, the configuration parameters con-
trol the number of cluster executor processes and threads.
With our implementation, we can better control the system
parameters like number of processes or threads.

• The DEBS Challenge queries are simple patterns based that
we can implement in a programming language in an opti-
mize form, and there is no need to have a complex query
processing and query optimization system.

We have implemented the Challenge queries as our initial pro-
totype system in python and run multiple tests to check if the
data streams are processed correctly, and the correct results are
submitted to the DEBS 2022 evaluation system. Our Python imple-
mentation includes many iterations over the single event objects
in a window stream. A vectorization of the many iterations could
improve the performance by running mapping bulk operations
to match the query 1 and query 2. Also, we experimented with
running multi-threading to process the events.

In a subsequent step, we implemented the same architecture
in Java to achieve higher processing performance (a better perfor-
mance can be achieved by using a system programming language
like C++ or Rust). Our implementation in Python and Java are
available on Github1

The next subsequent sections describe details of our implementa-
tion. Section 2 describes our conceptual design for a stream process-
ing system using multiple processing threads on a single machine
with multiple CPU cores. Further we describe how the same archi-
tecture can be extended to process the data stream on a cluster of
machines (multi-processing). Section 4 provides a brief description
of important implementation details and Section 5 provides a brief
overview of example experiment results.

2 STREAM PROCESSING ARCHITECTURE
Our data stream processing architecture is based on the event pro-
ducers and consumers concept that can be used to distribute the
processing tasks to multiple threads (on a single machine), or sepa-
rated processes (distribution on many commodity machines), or a
combination of both. Figure 4 depicts our system architecture. The
producers read the data stream batches from the remote network
1https://github.com/kiat/debs2022 , last updated June, 2022
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Figure 3: Exponential Moving Average of 38 and 100 for the
first 400 events.

API (provided by DEBS 2022 Challenge [5]), and store them in a
buffer queue in main memory. The buffer queue has a specific size
limitation that can be configured based on the available machine’s
RAM. The producer will read the data batches and store them in the
queue until the queue size reaches the specific size limit. Once the
queue limit is reached, the producer thread or process is suspended
until the queue is available again to receive data. We can use a
lock-free queue to cache the incoming data stream before the main
processing step.

The processing consumers access batches from the queue and
process the events to generate Query 1 (values of EMA38 and
EMA100) and the subsequent Query 2 results. For the computa-
tion of EMAs , each consumer is required to know about the last
EMA value of the previous batch for a given stock symbol. These
consumer processes are the major query processing units that we
call consumers for the sake of simplicity in this paper.

To make sure that there is no single bottleneck or synchroniza-
tion lock point in this processing architecture, we made each of
the consumers (processing units) be responsible for the monitoring
and the computation of a sub-set of stocks symbol. Each consumer
accesses the stream batches from the main memory cache and
processes only the symbols (stock market data events) that this con-
sumer is responsible for. This can be implemented by using hash
functions on stock symbol and mapping it to the unique identifica-
tion number of the consumer. In our implementation, the hashing
and distribution of the symbols to the consumers is processed in
parallel by the producers.

Each consumer has a hash table that it uses to memoize the
previous values of the moving averages for different stock symbols.
In order to optimize for memory and time complexity, the only data
stored per symbol include: the latest event (closing price) for the
current window, the EMA38 and EMA100 of the previous window,
and the last three crossover events. Each consumer has to access
events of each batch and compute those stock symbols that the
consumer is responsible for. With this approach, each consumer can
work independently of any other consumer in a functional form.
Access to each data batch from the queue should be implemented in

an efficient manner so that each consumer does not read the entire
batch to filter out the stock symbols it is responsible for.

Figures 5 and 6 illustrate the system design if we have included
an event dispatcher and an event submitter. We do not have a
dispatcher and submitter because of efficiency reasons and because
of the correctness of query processing. If we dispatch the event
batches as shown in Figure 5, for example, by round-robin batch
distribution, then each consumer has to work on all stock symbols
or a subset of them.

If consumers work on all of the events, then each consumer is
required to know the previous moving averages from the imme-
diate past batch to compute the new EMAs for the current data
batch; implying a strict dependence on the preceding consumer
before the current consumer can proceed. This issue would cause
incorrect processing, because a consumer should work in a paral-
lel distributed design, without any dependencies on each other’s
results. In the former case, if the consumers work on a subset of
stocks, we would need to pass every batch to all of the consumers,
and it is better to do this task in an integrated form with reading
from the queue.

Figure 7 illustrates how sequential data stream processing can
work to process the batches inmultiple serial event consumers. Each
processing unit will pick up and process a subset of stock market
events. In a single machine setup, the overhead of passing the event
batches to the next consumer is very small, but in a distributed
setting, the overhead of passing data batches to the next consumer
over the network is very high because of data serialization costs.
Comparing the architecture of Figure 7 and 5, we preferred to
implement the system parallel format shown in Figure 5.

If the stream of data is terminated, the stream processing system
will terminate, as producers cannot generate more event batches
and there are no event batches in the buffer queue.

3 DATA STREAMWINDOWING
Based on DEBS Challenge [5] description, our system has to com-
pute on events grouped into windows of 5 minute length, tumbling,
non-overlapping windows. The system clock timer starts when it
receives the first event and restarts every 5 minutes. As a prepro-
cessing step, our system reads the events into main memory and
generates data batches, which are then cached. The data batches
are thereafter passed to the next processing step for the subsequent
computation.

4 IMPLEMENTATION DETAILS
The described architecture can be implemented using multiple
threads on a single machine with multiple CPUs, or it can be dis-
tributed over a cluster of machines, each with multiple CPU cores.
Our first rapid alpha implementation of the system was a multi-
threaded Python implementation to make sure that we understood
the challenge tasks and are able to process the queries in the correct
form. Later, we implemented the whole system again in Java. Both
of these implementations are open sourced on Github2.

Our Java implementation includes two simple threads, one is the
event producer (or event batch Reader Thread that communicates
over the DEBS Challenge API). The Reader reads the stream of event
2https://github.com/kiat/debs2022 , last update June, 2022
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batches, creates and adds event batch windows (5 min. windows)
to an intermediate cache. In parallel, another consumer thread
processes the cached event windows data for the results of query 1
and query 2. We have integrated processing the query 2 with the
Query 1 task within the consumer thread. The caches are java lists
of batches and a java HashMap that caches event windows for each
stock symbols. To achieve better performance we pre-allocate both
of these caches Java ArrayList and HashMap with a specific size.
The two threads are synchronized over a simple lock mechanism
and thread notification. The results of both queries are submitted
by the consumer thread to the DEBS Challenge API.

4.1 Distributed Cluster Implementation.
The architecture in Figure 5 can be implemented on a cluster of ma-
chines. The cache to store the stream batches can be implemented
using shared memory on a single machine or using a service bus
like Apache Kafka3 or Apache Camel4 to store the events and let
multiple consumer clients access the streaming data batches.

Each consumer can subscribe to the event bus (e.g., Kafka) and
receive only those stock prices that the specific consumer is re-
sponsible for. In this way, there are no dependencies between the
consumers and there is no need to pass over data batches to the
next consumer; also, each consumer can submit the query result to
the output sink.

One other implementation detail is to use a high-efficient data
model and serialization framework for the data transmission be-
tween the processing nodes. Studies have shown that choosing the
correct data model and serialization have a huge impact on data
processing performance [6].

We suggest implementing the proposed architectural solution in
a system programming language, like C++ or Rust, because of the
statically typed variables and manually managed memory without
an overhead of automated garbage collection. As described in Sec-
tion 2, the proposed architecture can be implemented usingmultiple
threads on a single machine with multiple CPUs or distributed over

3https://kafka.apache.org/
4https://camel.apache.org/
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Figure 7: A Sequential Processing Pipeline. Each consumer reads a batch and passes to the next consumer.

a cluster of machines each with multiple CPU cores. Our first rapid
alpha implementation of the system is in multi-threaded Python
code to make sure that we understand the challenge tasks and be
able to process the queries in the correct form.

5 EXPERIMENTS AND EVALUATION
We have run multiple experiments to be able to select the right
stream processing architecture for this task. Our experiments in-
clude a set of experiments with varying numbers of event producers
and consumer threads, as well as other experiments with different
numbers of threads and queue buffer sizes.

The main computation for Query 1 and Query 2 is a very small
computation to get the last prices from a dictionary of stock symbols
and then compare the two values of EMA38 and EMA100 to identify
breakouts. We have profiled our implementation and confirmed that
the main implemented system is an I/O bounded application, rather
than a CPU bounded application, because of the quick computation
for Query 1 and 2. The most time is invested to get the data from
the network (which is improved by having multiple producers),
followed by organizing the stock price dictionaries and iterating
over the single events in an event batch.

By using vectorized bulk operations, we can avoid the linear
time of iterating over the batch of events. This is implemented by
using vectorization within each of our multi-threaded consumers.

We have experimented with different numbers of producers and
consumers. Figure 8 depicts Query 2 throughput results for different
numbers of producers and consumers using small data batch of
size 1k. These results are produced by using the benchmark system
provided by the DEBS 2022 Grand Challenge5.

Our Java implementation can achieve higher performance be-
cause of some language features (Like static variable types and
improved iterations over event batches). According to the DEBS
2022 evaluation [5] server, our Java implementation can achieve
a latency of 19.99 seconds and a 88.21 batch per seconds with an
event batch size of 10k (events arriving in batches of 10k).

6 CONCLUSION
In this paper, we described our different architectures for a stock
market data stream processing to implement the DEBS 2022 Grand
Challenge. Our implementation and evaluation are limited due
to the time constraints we had for this work. One potential im-
provement would be to implement it using a system programming
language. Also, it would be interesting to evaluate how a from-
scratch-implemented system would perform in this case compared
to some large-scale cluster-based stream processing systems like
Apache Storm or Flink.

5https://github.com/jawadtahir/CHALLENGER last update June, 2022

Figure 8: Query 2 throughput for different number of Pro-
ducers. (Batch Size 1k - Multi-threaded Python implementa-
tion)
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