
Substream Management in Distributed Streaming Dataflows
Artem Trofimov

tyoma@lzy.ai

lzy.ai

Tel Aviv, Israel

Nikita Sokolov

faucct@gmail.com

Yandex Cloud

Saint Petersburg, Russia

Nikita Marshalkin

marnikitta@gmail.com

No affiliation

Limassol, Cyprus

Igor Kuralenok

igor.kuralenok@huawei.com

Huawei

Saint Petersburg, Russia

Boris Novikov

borisnov@acm.org

HSE University

Saint Petersburg, Russia

ABSTRACT
Most state-of-the-art SPEs use punctuations to divide a stream into

bounded substreams of messages, such as epochs and windows.

The punctuation approach is powerful but has limitations: it does

not support cyclic dataflows, is poorly scalable in some cases due

to intensive use of broadcasts, and becomes inefficient when the

number of chunks or cluster size becomes significant. We introduce

a new substream tracking technique called trAcker that overcomes

the limits of punctuations. We experimentally evaluate the prop-

erties of trAcker in both synthetic and real-world environments.

Experiments show that our technique outperforms punctuations

for a large number of substreams and efficiently handles real-world

cyclic dataflows.

CCS CONCEPTS
• Information systems→ Stream management.

KEYWORDS
Data streams, punctuations, watermarks, substreams, stream join,

state management

ACM Reference Format:
ArtemTrofimov, Nikita Sokolov, NikitaMarshalkin, Igor Kuralenok, and Boris

Novikov. 2022. Substream Management in Distributed Streaming Dataflows.

In The 16th ACM International Conference on Distributed and Event-based
Systems (DEBS ’22), June 27–30, 2022, Copenhagen, Denmark. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3524860.3539809

1 INTRODUCTION
The processing of a data stream without insights into the proper-

ties of its data elements can be challenging. For example, it may

be unclear when a system can prune outdated keyed state [27],

release windowed aggregations [5], or create a state snapshot for

an epoch [7].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9308-9/22/06. . . $15.00

https://doi.org/10.1145/3524860.3539809

Each of these scenarios is a particular case of a problem of moni-

toring substreams emergence and termination that we call a sub-
stream management problem. A substream is a part of the stream

such that all its elements satisfy some predicate. For example, in the

case of state pruning, the predicate is [a data element key equals to
𝐾], for time window aggregations, the predicate is [a data element
has a timestamp less than𝑇], and for state snapshotting it is [a data
element belongs to the epoch 𝐸].

In this paper, we focus only on two signals: substream start and

its termination. Tracking a start of a substream is a straightforward

task: the first event of a substream will naturally trigger its start. On

the contrary, generating a substream termination event is a chal-

lenging task, and various properties may be required by practical

problems:

• Deterministic windowed join
1
requires an order of termina-

tion signals to respect the order of input elements (termina-

tion events from data producers) [12, 20].

• An epoch is a substream that an SPE should process atomi-

cally. A termination event for an epoch should arrive before

any elements of the next epoch [8].

• State pruning problem does not require any specific prop-

erties from termination events. However, late termination

event receiving may cause sub-optimal memory utilization.

A popular substream management method is the punctuations

framework [28]. The main idea behind this framework is to divide

the stream by injecting special elements called punctuations that
define substreams “borders”. These special elements are propagated

via the same network channels as data elements. While the punc-

tuation approach is robust and easy to implement, it has several

limitations.

Punctuations are not applicable for cyclic dataflows in a gen-

eral case because elements belonging to a substream can remain

in transit within a cycle for an uncertain time [6]. The technique

proposed in [7] mitigates this issue for the state snapshotting prob-

lem. The main idea of this technique is to include in a snapshot all

in-transit elements (possibly from previous epochs) within a cycle

and then resend them on rollback. However, it provides a solution

for a specific problem that does not allow a system to determine a

substream termination for cyclic dataflows using punctuations.

The high network overhead forms another limitation. Network

traffic complexity for this method is 𝑂 (𝐾 |Π |2), where |Π | is the
number of processes and 𝐾 is the number of substreams because

1
given the same sequences of input tuples, the same output tuples will be produced

https://doi.org/10.1145/3524860.3539809
https://doi.org/10.1145/3524860.3539809

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Artem Trofimov, Nikita Sokolov, Nikita Marshalkin, Igor Kuralenok, and Boris Novikov

h

process
f

e

g

Tracking
agent

Signals from data
producers

Information about
in-flight elements

NEOSS

d

Figure 1: trAcker framework: tracking agent aggregates in-
formation about substreams and produces NEOSS

each process should propagate punctuations to all output channels.

This complexity boundary covers the worst case when all processes

are interconnected. However, SPEs prefer to distribute the work

among nodes evenly to ensure scalability [1, 9, 15]. This load bal-

ancing implies that each process effectively occupies channels to all

other processes. The worst-case complexity boundary is tight for

scenarios when an execution graph contains at least one operator

that repartitions data.

Substreams can be fine-grained: for example, each user session

defines a substream. If there are a lot of small substreams, an ineffi-

cient substream management system can degrade the latency [4]

and the throughput of an SPE [18] or affect the performance of

state checkpointing [33].

In this work we formalize the substream management problem

and show that the network traffic overhead of the punctuations

framework is far from the optimal. We also formally define prop-

erties of a substream management technique required by various

problems such as state snapshotting to ensure that a newly pro-

posed method satisfy them.

We introduce a new substream management framework called

trAcker. Figure 1 shows the high-level scheme of our method.

Within this framework, we use a dedicated agent that receives

information about substreams from the entire SPE and sends back

end-of-substream notifications (NEOSS). NEOSS messages are prop-

agated through this agent without broadcasting between processes,

reducing the amount of extra traffic. Such propagation method is

suitable for cyclic dataflows because there is no need to forward

service traffic through the cycles.

Basic comparison between the trAcker framework and its alter-

natives is shown in Table 1. Regarding network traffic, |Π | is the
number of computational nodes and 𝐾 is the number of substreams.

We can outline that the punctuations framework is the only sub-

stream management mechanism that supports arbitrary predicates

for substreams, so we use it as a baseline approach in the exper-

iments. The commonalities and differences between the trAcker

framework and alternative solutions are detailed in Section 6.

In summary, our contributions are as follows:

(1) We provide a formal model of substream management. This

model allows us to compare the properties of various sub-

stream management systems.

(2) We present a novel substream management technique that

achieves a lower bound of network traffic overhead.

Table 1: An overview of substream management techniques

Method Arbitrary predicates Cycles Traffic

Punctuations + - 𝑂 (𝐾 |Π |2)
MillWheel* - N/A N/A

Naiad* - + 𝑂 (𝐾 |Π |2)
Acker - + 𝑂 (𝐾 |Π |)
trAcker + + 𝑂 (𝐾 |Π |)

*progress tracker

(3) We demonstrate trAcker performance in comparison to a

state-of-the-art approach on diverse workloads.

The rest of the paper is organized as follows: Section 2 formalizes

the substream management problem and indicates its main prop-

erties. In Section 3, we introduce a general design of the trAcker

framework and demonstrate the properties of this substream man-

agement solution. Section 4 summarizes the implementation of

trAckerİn Section 5, we show that the proposed technique is scal-

able and can outperform alternatives employed in state-of-the-art

stream processing engines. The relevant prior research is outlined

in Section 6. Finally, we discuss our conclusions in Section 7.

2 SUBSTREAMMANAGEMENT
First, in this section, we formalize a stream processing engine based

on Chandy-Lamport definition of a distributed system. Then we

define the substream management problem based on the notions

from the proposed model. Finally, we discuss a state-of-the-art

substream management technique called punctuations.

2.1 Processing model
Typically, distributed stream processing engines are shared-nothing

runtimes that continuously ingest input elements, transform them

according to a logical dataflow graph, and deliver output elements.

The logical dataflow graph consists of user-defined operators. Op-

erators are functions of a single input data element that produce

a number of output data elements. Operators can be stateless or

stateful: output elements may depend on the current state. A logical

graph is mapped to a physical, distributed graph on deployment.

Table 2: Notations used throughout the paper

𝑝 Process (node in a physical execution graph)

𝐼𝑝 ,𝑂𝑝 input and output channels of a process 𝑝

𝑓 𝑢𝑛𝑐𝑝 (𝑈 ,𝑀) User-defined operator run by process 𝑝 . It receives

current operator state𝑈 and an incoming message

𝑀

Π The set of all processes

𝐾 Number of substreams

𝑐 A network channel between processes

E The set of all network channels

𝑠𝑝 = 𝑈𝑝 ∪ 𝐵𝑝 State of the process 𝑝 consists of a mailbox 𝐵𝑝 and

a state𝑈𝑝 of 𝑓 𝑢𝑛𝑐𝑝
𝑚𝑏𝑐𝑝 Mailbox controller of a process 𝑝

𝑒𝑝 Event of a process 𝑝

𝑃𝑟𝑒𝑑 (𝑒) Propositional formula defined on events

𝑝𝑟𝑒𝑑 (𝑀) Propositional formula defined on messages

𝑡 (𝑀) Coarse time label

Substream Management in Distributed Streaming Dataflows DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

mailbox
controller

BL
handler

messages messages

Process

state

Figure 2: Structure of the SPE process

Commonly, a single logical operator can be deployed on multi-

ple computational nodes. Further, we denote physical instances of

logical operators as processes.
A deployed physical graph is a distributed system and could

be described in terms of the Chandy-Lamport model [6, 11]. In

this model, the authors introduce events that allow observing a

state of the entire system. This approach allows defining system-

wide guarantees: in the original paper, it is used to introduce the

notion of consistent state, we use this approach for the definition of

a substream management problem.

Following the notation from [6, 11], the distributed system is

observed with events. Each event is a tuple of 5 elements 𝑒 =

(𝑝, 𝑠, 𝑠 ′, 𝑐, 𝑀), where 𝑝 is one of the deployed processes, 𝑠 and 𝑠 ′

are state of the process before and after processing, 𝑐 is one of

network FIFO channels that connect processes, and𝑀 is a message

generated during processing. The generated event 𝑀 comes to a

channel state 𝐶 until the destination process receives it. Processes

and channels form a physical graph of the system 𝐺 = {Π, E}. We

denote all input channels as 𝐼𝑝 and output channels as 𝑂𝑝 .

In a stream processing engine, we need to specify a process 𝑝

to reflect the nature of SPE. In our model we split a process into

two separate blocks: business logic handler (BLH), and mailbox con-
troller (MBC). The first block encapsulates a user-defined operator.

In this model user-defined operator does not directly communicate

with other processes in the system. Instead of this, it receives and

generates messages – data elements that are tagged by their source

and destination. Further delivery of these messages along the com-

munication channels is then handled by a mailbox controller that

preserves the order of message generation. Figure 2 illustrates the

scheme of a process. This system layout is not new, and it is widely

used in practice (Akka, YDB, Millwheel, etc.).

More formally, when a process receives a message, it is handled

by the mailbox controller that puts this message into a special seg-

ment of the process state (mailbox 𝐵𝑝). The business logic handler
gets a message provided by MBC and triggers a user-defined op-

erator. The user-defined operator processes the data element that

the message contains and generates an arbitrary number of out-

going messages. BLH puts generated messages back to a mailbox.

MBC sends outgoing messages along communication channels to

destination processes. All mailbox controller operations respect

the order of messages in the mailbox. If a user-defined operator

has a state 𝑈𝑝 , the joined process state will consist of the mailbox

and this state 𝑠 = 𝑈𝑝 ∪ 𝐵𝑝 . In the Chandy-Lamport paradigm this

algorithm produces the following events within a process:

• Communication events: ⟨𝑟𝑒𝑐𝑣, 𝑝, 𝑀⟩, ⟨𝑠𝑒𝑛𝑑, 𝑝,𝑀⟩ – these

events are handled by mailbox controller

• Processing of an incoming message ⟨𝑝𝑟𝑜𝑐, 𝑝,𝑀,𝑀 ′⟩

Lets translate these events into 5-tuple language. Communica-

tion events move a message between communication channel and

mailbox section of the state:

⟨𝑟𝑒𝑐𝑣, 𝑝, 𝑀⟩ = (𝑝, 𝑠𝑝 , 𝑠 ′𝑝 = 𝑈𝑝 ∪
(
𝐵𝑝 ∪ {𝑀}

)
, 𝑐𝑞𝑝 , 𝑀) (1)

⟨𝑠𝑒𝑛𝑑, 𝑝,𝑀⟩ = (𝑝, 𝑠𝑝 , 𝑠 ′𝑝 = 𝑈𝑝 ∪
(
𝐵𝑝 \ {𝑀}

)
, 𝑐𝑝,𝑑𝑠𝑡 (𝑀) , 𝑀) (2)

Note that we need to be able to get a destination process directly

from the message 𝑑𝑠𝑡 (𝑀). This function translates a destination

element from logical dataflow graph nodes, used in user-defined

code, to physical communication channels between processes. A

practical case of this abstraction is a sharding scheme for some key:

user-defined procedure emits event for some key, and a system is

responsible for finding a proper physical channel to deliver this

message.

Incoming message processing does not influence the communi-

cation channels and only ingest results of a message processing

(𝑈 ′, 𝑀 ′) = 𝑓 𝑢𝑛𝑐𝑝 (𝑈 ,𝑀):
⟨𝑝𝑟𝑜𝑐, 𝑝,𝑀,𝑀 ′⟩ = (𝑝, 𝑠𝑝 , 𝑠 ′𝑝 = 𝑈 ′

𝑝 ∪
(
𝐵𝑝 \ {𝑀} ∪𝑀 ′) , ∅, ∅) (3)

Note that in this case,𝑀 ′
may contain more than one message.

Following the Chandy-Lamport model, we assume processes are

single-threaded, so within the specific process 𝑝 , all events are

ordered by a local causal order relation <𝑝 : 𝑒
0

𝑝 , 𝑒
1

𝑝 , . . . , 𝑒
𝑖
𝑝 , Please

note that each process has its own local causal order relation, so

we do not assume any total order among events from different

processes. This model is indeed practical, e.g., implemented in actor-

based systems.

2.2 Substream management events
2.2.1 Substreams lifespan. For each process, we want to get the

first and the last element of a substream. The first one could be

found naturally when it emerges, but verification that there will

be no more events of a substream could be problematic. Strict sub-

stream termination guarantee consists of two parts: source must

promise that no more messages from substream may emerge, and

the system must ensure it contains no substream messages. The

first task requires a contract with a particular data source and is

thus out of scope for this paper, though it is discussed in relevant

literature [3]. Instead, we focus on the second task; this is chal-

lenging due to distributed nature of the system and the lack of a

common message lifetime limit. This difficulty increases with the

introduction of cycles into dataflow. Crucially, processes are not

isolated from one another, and substream messages can move from

one process to another. That is why we need to observe all in-flight

messages in the system.

Formally, a substream can be defined via the propositional for-

mula 𝑃𝑟𝑒𝑑 (𝑒) for any system event. We have to use system events

as they are ordered inside each process and can define a border of a

substream. Sometimes it is more practical to induce this predicate

to messages (𝑝𝑟𝑒𝑑 (𝑀)) involved in processing: 𝑃𝑟𝑒𝑑 (𝑒) = (𝑒 =

⟨𝑝𝑟𝑜𝑐, 𝑝,𝑀,𝑀 ′⟩) ∧ 𝑝𝑟𝑒𝑑 (𝑀).
In this paper we are interested in such 𝑃𝑟𝑒𝑑 (𝑒), that has limited

lifespan within a process and want to know when substream starts

and terminates: ∀𝑝, ∃𝑡𝑝
0
, 𝑡
𝑝

1
: ∃𝑒 : 𝑒

𝑡
𝑝

0

<𝑝 𝑒 <𝑝 𝑒𝑡𝑝
1

, 𝑃𝑟𝑒𝑑 (𝑒) & ∀𝑒 ′ :
𝑒
𝑡
𝑝

1

<𝑝 𝑒
′,¬𝑃𝑟𝑒𝑑 (𝑒 ′). Lets boil this formula down: for each process

𝑝 in the system there must be two event indices 𝑡
𝑝

0
for substream

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Artem Trofimov, Nikita Sokolov, Nikita Marshalkin, Igor Kuralenok, and Boris Novikov

b c d e f eos h

Substream
ends

Termination
event

processing
events

a

Figure 3: Substream management: soft bound

start and 𝑡
𝑝

1
for its termination, such that events satisfying 𝑃𝑟𝑒𝑑

must be between these indices.

Substream management problem is to define a special mechanism

that estimates substream bound for each process. In our system

model, we need to define a system event that indicates the bound

of a substream for a process. We call this termination event or

end-of-substream event, this appropriate :

⟨𝑒𝑜𝑠𝑠, 𝑝, 𝑃𝑟𝑒𝑑⟩ = (𝑝, 𝐵𝑝 , 𝐵𝑝 ∪ 𝑒𝑜𝑠𝑠 (𝑃𝑟𝑒𝑑), ∅, ∅) (4)

As we mentioned before, some problems require certain prop-

erties of the termination events. For example, the state pruning

problem does not require any special properties, while for the state

snapshotting problem, the substream management system should

detect the exact substream bound. In the following sections, we

formalize these properties.

2.2.2 Soft bound. Many applications that apply substreammanage-

ment systems do not require any special properties of termination

events. In this case, we denote the guarantee provided by such

events as soft bound, because termination events indicate only the

fact that the substream ended some time ago, and other input ele-

ments could be processed after that. More formally, we define the

soft bound guarantee of the termination event (end-of-substream)

⟨𝑒𝑜𝑠𝑠𝑠𝑜 𝑓 𝑡 , 𝑝, 𝑃𝑟𝑒𝑑⟩ as follows:

∀𝑒, 𝑒 >𝑝 ⟨𝑒𝑜𝑠𝑠𝑠𝑜 𝑓 𝑡 , 𝑝, 𝑃𝑟𝑒𝑑⟩ ⇒ ¬𝑃𝑟𝑒𝑑 (𝑒) (5)

Figure 3 illustrates this notion. Terms 𝑎, 𝑏, 𝑐, 𝑑... denote ordered

processing events of a process 𝑝 . The substream ends after event

𝑐 . Note that there are several other events between the end-of-

substream and 𝑐 . This is the property of a soft bound guarantee: if
⟨𝑒𝑜𝑠𝑠𝑠𝑜 𝑓 𝑡 , 𝑝, 𝑃𝑟𝑒𝑑⟩ occurs, all subsequent elements do not satisfy

the predicate, but it is not necessarily the exact substream “border”.

2.2.3 Firm bound. The guarantee that any new event will not

satisfy the predicate is sufficient for many real-life problems, e.g.,

SPE can initiate process state pruning on such events. However,

some problems require a firm bound: guarantee that the substream
ends exactly after the termination event.

For example, epoch-based snapshotting protocol [8, 13] relies

on the notion of epoch. An epoch is a special substream that must

be processed atomically. Therefore, the SPE requires the termina-

tion event for a given epoch to occur immediately after the last

processing event for that epoch. Otherwise, the snapshot can be

inconsistent, capturing elements from multiple epochs. To sup-

port such scenarios, the end-of-substream event ⟨𝑒𝑜𝑠𝑠𝑓 𝑖𝑟𝑚, 𝑝, 𝑃𝑟𝑒𝑑⟩
should satisfy the following condition:

⟨𝑒𝑜𝑠𝑠𝑓 𝑖𝑟𝑚, 𝑝, 𝑃𝑟𝑒𝑑⟩ = inf<𝑝
⟨𝑒𝑜𝑠𝑠𝑠𝑜 𝑓 𝑡 , 𝑝, 𝑃𝑟𝑒𝑑⟩ (6)

e f g h

processing
events

a b c eos

Substream
ends

Figure 4: Substream management: firm bound

Unlike the soft bound, within the firm guarantee, the first ele-

ment outside the substream 𝑃𝑟𝑒𝑑 must be ordered after the firm

bound event in the process 𝑝 . This position satisfies the first possi-

ble soft bound in the events ordering. Figure 4 illustrates the notion

of the firm bound. As in the previous example, terms 𝑎, 𝑏, 𝑐, 𝑑...

denote ordered processing events of a process 𝑝 . However, in this

case, event ⟨𝑒𝑜𝑠𝑠𝑓 𝑖𝑟𝑚, 𝑝, 𝑃𝑟𝑒𝑑⟩ occurs right after the substream ter-

minates.

2.2.4 Consistent termination events order. Some specific applica-

tions, including the mentioned earlier epoch-based snapshotting

method and techniques for enforcing deterministic processing [16]

require an order of termination events to be synchronized with

the order of substreams last elements processing. For example, if

termination events are reordered, then snapshots for consecutive

epochs can be inconsistent. Another example is deterministic join

that also requires the defined order of termination events [12].

b d e f h

Substream 1
ends

processing
events

a

Substream 2
ends

j

Termination
event for 2

Termination
event for 1

eoseos

Figure 5: An example of termination events reordering

Termination events reordering in case of the soft bound guar-

antee is illustrated in Figure 5. Terms 𝑎, 𝑏, 𝑐, 𝑑 ... denote ordered

processing events of a process 𝑝 . Although the substream contain-

ing events 𝑎, 𝑏 terminates earlier, the end-of-substream event for

this substream occurs after the termination event for the substream

containing events 𝑑, 𝑒 .

Let 𝑒∗
1
and 𝑒∗

2
be the last elements of substreams defined by

predicates 𝑃𝑟𝑒𝑑1 and 𝑃𝑟𝑒𝑑2. Termination events ⟨𝑒𝑜𝑠𝑠, 𝑝, 𝑃𝑟𝑒𝑑1⟩
and ⟨𝑒𝑜𝑠𝑠, 𝑝, 𝑃𝑟𝑒𝑑2⟩ are consistently ordered iff:

𝑒∗
1
>𝑝 𝑒

∗
2
⇔ ⟨𝑒𝑜𝑠𝑠, 𝑝, 𝑃𝑟𝑒𝑑1⟩ >𝑝 ⟨𝑒𝑜𝑠𝑠, 𝑝, 𝑃𝑟𝑒𝑑2⟩ (7)

2.2.5 Optimal traffic overhead. A vital performance property of

a substream management system is the amount of extra network

traffic. Let |Π | be a number of processes, and 𝐾 be a number of

substreams.

Lemma 1. The network overhead induced by a substream manage-
ment system cannot be lower than 𝑂 (𝐾 |Π |).

Substream Management in Distributed Streaming Dataflows DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

Proof. We assume one by one processing of substreams for

them to be isolated (e.g. epochs). When a substream management

system detects the termination of a substream, each stateful process

should be informed about this. Hence, at least one network message

(termination notification) must be received by each process for each

substream. □

2.3 Punctuations framework
The main idea behind the punctuations framework is to inject

special data elements P𝑝𝑟𝑒𝑑 into data stream one per substream.

These elements, called punctuations, flow down the workflow as

ordinary data elements. The injector promises that all elements after

punctuations won’t satisfy the predicate. Hence, the punctuation

itself defines the “border” of a substream.

Figure 6 illustrates the punctuations framework. Green elements

indicate elements that belong to some substream, while red ele-

ments do not. As we can see, punctuations play the role of delimiter

between the substream elements and all further items.

d

c

h

process a

f

b

e

g

pu
nc
t

pu
nc
t

1

h

process
f

eg

pu
nc
t

2

Figure 6: Punctuations handling by a single process

Processes within SPE do not apply user-defined operators to

punctuations. Instead, each process 𝑝 propagates punctuation mes-

sages P𝑝𝑟𝑒𝑑𝑝𝑞 to all outgoing channels 𝑐𝑝𝑞 ∈ 𝑂𝑝 when it receives

corresponding punctuations from all input channels 𝐼𝑝 .

Lemma 2. Generating event by following rule make it a soft bound
of the substream 𝑝𝑟𝑒𝑑 :

∀𝑞 ∈ 𝐼𝑝 , ∃P𝑝𝑟𝑒𝑑𝑞𝑝 ∈ 𝐵𝑝 ,∀𝑀 ∈ 𝐵 : ¬𝑝𝑟𝑒𝑑 (𝑀) ∨ 𝑑𝑠𝑡 (𝑀) ≠ 𝑝 (8)

Proof. We can use indirect proof. Let ⟨𝑝𝑟𝑜𝑐, 𝑝,𝑀∗, 𝑀 ′⟩ be a pro-
cessing event that happens after the soft bound termination event

but 𝑝𝑟𝑒𝑑 (𝑀∗). In other words, there is a message 𝑀∗, 𝑝𝑟𝑒𝑑 (𝑀∗)
that arrived after all punctuations for the predicate 𝑝𝑟𝑒𝑑 had been

arrived. According to the definition of a distributed system from

Section 2.1, message𝑀∗
could emerge either from the mailbox of

a process or from incoming channels. The emergence from the

mailbox contradicts the condition of the termination event genera-

tion rule ∀𝑀 ∈ 𝐵 : ¬𝑝𝑟𝑒𝑑 (𝑀) ∨ 𝑑𝑠𝑡 (𝑀) ≠ 𝑝 . On the other side, the

emergence from an incoming channel contradicts the condition that

punctuations arrived from all channels ∀𝑞 ∈ 𝐼𝑝 , ∃P𝑝𝑟𝑒𝑑𝑞𝑝 because

message𝑀∗ cannot be reordered with punctuations by design. □

To satisfy the firm bound guarantee, the mailbox controller

should block processing of all incoming messages from a chan-

nel as soon as it receives punctuation from this channel. In [7] such

behavior is called watermark (punctuation) alignment. Formally we

can rewrite this requirement in terms of event ordering:

Lemma 3. A soft bound becomes firm if a process event order satisfy
the following conditions:

∀𝑒1, 𝑒2 = ⟨𝑟𝑒𝑐𝑣, 𝑝,P𝑝𝑟𝑒𝑑𝑞1,2𝑝
⟩, �𝑒 ′ = ⟨𝑝𝑟𝑜𝑐, 𝑝,𝑀𝑞1𝑝 , 𝑀 ′⟩, 𝑒1 <𝑝 𝑒

′ <𝑝 𝑒2
(9)

Proof. Let us suppose that there is a message 𝑀𝑞𝑝 of a next

substream that was processed after the last element of the current

substream, but before the generation of a bound event. This message

either came from the channel 𝑞 before a punctuation from that

channel generating a bound, or was processed before all channels

delivers their punctuations. The first case could happen if 𝑀𝑞𝑝
was reordered with the punctuation along the processing path

and contradicts with FIFO processing logic (see previous proof

for details). The second case is impossible because of processing

limitations introduced by 9. □

3 TRACKER FRAMEWORK
A substreammanagement system should inform all processes that a

substream ends, so the amount of extra traffic cannot be lower than

𝑂 (𝐾 | |Π | |). To achieve this lower bound, one can apply an additional
agent (process) that receives information about substreams from

processes and sends back information about terminated substreams.

In this case, the fact that substream terminates is propagated

through this agent without broadcasting between processes, so

the amount of extra traffic can be linear by the number of pro-

cesses. Such propagation method is suitable for cyclic dataflows

because there is no need to forward service traffic through the

cycles. Therefore, we design a tracking agent that:

(1) Receives signals from data producers that a substream has

terminated.

(2) Watches for in-flight elements and substreams.

(3) Notifies dataflow processes when the substream ends for
them, i.e., when they stop receiving elements which satisfy

some predicate.

The general scheme of the trAcker mechanism is shown in Fig-

ure 1. A special tracking agent receives signals from data sources,

fetches information about in-flight elements, and then decides

where to send end-of-substream notifications (NEOSS).
This substream notifications distribution can be more efficient

in terms of network traffic but provides new challenges. Before

diving into implementation details, we should answer the following

questions regarding trAcker framework:

Q1 How to monitor in-flight elements? To detect that a sub-

stream ends, the tracking agent should receive the corresponding

signal from data producers and ensure no substream in-flight ele-

ments.

Q2 How to ensure bound guarantees? While there are no

longer special elements in the stream that denotes the substream

end, we need to design soft and firm substream bound conditions

based on NEOSS from the shared agent.

Q3 How to provide a consistent termination events order?
Unlike punctuations, trAcker notifications are completely async

with dataflow elements because they go through another network

channel. Hence, dataflow items and notifications are not ordered,

making it hard to ensure that the notifications order is consistent.

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Artem Trofimov, Nikita Sokolov, Nikita Marshalkin, Igor Kuralenok, and Boris Novikov

Q4 What functional and performance properties does the
trAcker have? trAcker framework is designed to eliminate the

limitations of punctuations framework. We should demonstrate

that it is suitable for cyclic dataflows as well as can provide lower

network overhead.

3.1 Answering Q1: How to monitor in-flight
elements?

To start tracking of a data element the system sends an 𝑆𝑁𝐷 (𝑝𝑟𝑒𝑑,𝑀, ∅)
notification to the tracker. Then each process sends the following

report messages on each ⟨𝑝𝑟𝑜𝑐, 𝑝,𝑀,𝑀 ′⟩ event:
(1) For all output elements 𝑚 ∈ 𝑀 ′

for all substreams they

belong to 𝑝𝑟𝑒𝑑 (𝑚) = 1: 𝑆𝑁𝐷 (𝑝𝑟𝑒𝑑,𝑚, 𝑝)
(2) For the input element𝑀 and all satisfying substreams 𝑝𝑟𝑒𝑑 (𝑀) =

1: 𝑅𝐶𝑉 (𝑝𝑟𝑒𝑑,𝑀, 𝑝)
Further in this paper, we will denote them as SND report and RCV
report. Note that this communication scheme is heavily optimized

in practice. The order of 𝑆𝑁𝐷 and 𝑅𝐶𝑉 messages is important

because each pair of these events forms a chain ring, and sending

𝑆𝑁𝐷 before𝑅𝐶𝑉 links these rings together.We can use these chains

to track data element processing for the whole workflow graph or

its part.

Chains of 𝑆𝑁𝐷 and 𝑅𝐶𝑉 messages allow the trAcker to track

processing of a data element along with a workflow graph. This idea

is not new and used in Apache StormAcker but despite the technical

similarity of the core idea
2
, Acker and trAcker play different roles

in SPE. Acker ensures that the system entirely processed an input

element and notifies the user when the processing runs out of time.

trAcker tracks an entire substream and allows to define its bounds.

3.2 Answering Q2: How to ensure bound
guarantees?

To detect a substream bound, a process needs to ensure that input

channels will provide no more elements of this substream. In case

of the punctuations framework, the watermark messages carry

this guarantee. In case of shared agent, NEOSS messages play the

same role. We can assume that each input channel 𝑐 comes from

a segment of the workflow𝑊𝑐 graph. NEOSS is sent to a process

when:

• for all incoming channels 𝑐 ∈ 𝐼𝑝 corresponding segment𝑊𝑐
contains no elements of the substream in-flight (has unpaired

𝑆𝑁𝐷 report);

• all data providers have promised to send no more elements

of the substream.

It is easy to show that we can join workflow segments for all in-

coming channels𝑊𝑝 = ∪𝑐∈𝐼𝑝𝑊𝑐 and track a single subgraph𝑊𝑝
per process. Using the properties of NEOSS now we can define a

soft bound criterion:

Lemma 4. Soft substream bound could be generated by following
rule:

∃𝑁𝐸𝑂𝑆𝑆 ∈ 𝐵𝑝 ,∀𝑀 ∈ 𝐵𝑝 : ¬𝑝𝑟𝑒𝑑 (𝑀) ∨ 𝑑𝑠𝑡 (𝑀) ≠ 𝑝 (10)

2
Good old XOR commutativity trick.

t=1

t=5

process
t=3

t=2

t=4

NEOSS

NEOSS
Notifications are

ordered by t

Tracking
agent

Signals from data
producers

Information about
in-flight elements

Figure 7: trAcker framework: tracking agent sends NEOSS
elements according to the order on t(m)

Proof. If a substream data element is processed after the defined

point in events order, it either comes from the mailbox or from

one of the incoming channels 𝑐 ∈ 𝐼𝑝 . The first case contradicts

∀𝑚 ∈ 𝐵𝑝 : ¬𝑝𝑟𝑒𝑑 (𝑚). The second case could happen because a new

substream element enters the system (source broke the promise)

or a substream element inside the𝑊𝑝 without the 𝑆𝑁𝐷/𝑅𝐶𝑉 chain

(contradicts with 𝑆𝑁𝐷/𝑅𝐶𝑉 chains generation rule). □

To satisfy the firm bound guarantee, one needs to hold elements

that do not belong to the substream in the mailbox until NEOSS has

arrived. This technique is quite similar to the punctuations align-

ment behavior mentioned in the previous section. If this condition

is satisfied, then ⟨𝑒𝑜𝑠𝑠𝑓 𝑖𝑟𝑚, 𝑃𝑟𝑒𝑑⟩ = ⟨𝑒𝑜𝑠𝑠𝑠𝑜 𝑓 𝑡 , 𝑃𝑟𝑒𝑑⟩ for the trAcker.

3.3 Answering Q3: How to provide the
consistent termination events order?

In the punctuations framework, such order is provided by design

because punctuations and ordinary data items go through the same

FIFO network channels. In trAcker this order should be enforced.

Assume that SPE assigns to the messages a special totally ordered

label 𝑡 (𝑀). All messages generated by single processing inherit the

label from the input message.

In this case, if the order on 𝑡 (𝑀) coincides with the order of input
elements, then trAcker can produce the NEOSS events according to

this order as well. In other words, trAcker can reorder the NEOSS

events such that they will be consistent with the substreams order.

An example of this concept is shown in Figure 7. The substream

containing element with 𝑡 = 1 ends before the substream containing

element with 𝑡 = 2. As we can see, the order of NEOSS elements

from trAcker coincides with 𝑡 (𝑀).
A vital question here is how to implement the assignment of

ordered labels 𝑡 (𝑚). One way is to use the time oracle service [31]
which can provide totally ordered labels. A simple alternative is

discussed in the next section.

3.4 Answering Q4: What are the functional and
performance properties of trAcker?

trAcker does not require regular broadcasting of the elements to

all computational nodes because all service traffic goes through

a single agent. This change allows trAcker to have the following

features by design:

Substream Management in Distributed Streaming Dataflows DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

(1) Cyclic dataflows support. Because the tracking agent is
monitoring the properties of in-flight elements without di-

rectly injecting service items into a dataflow, trAcker does

not have the problem of throwing them through a cycle.

(2) Low network overhead. Processes can send reports once

per a fixed time period, so there is a constant time of such

reports per a finite substream. The reports require 𝑂 (|Π |)
extra messages, while the NEOSS events 𝑂 (𝐾 |Π |). The total
amount is 𝑂 (𝐾 |Π | + |Π |) = 𝑂 (𝐾 |Π |) that is optimal for the

substream management problem.

(3) Low latency and impact on SPE throughput. Punctua-
tions can be stuck by other data elements if they are sent

with some delay after the last substream element. In trAcker,

service traffic goes through other network channels that can

reduce latency between actual substream termination and

the corresponding event. Together with the low amount of

service traffic, this scheme does not significantly reduce the

throughput of an SPE, as we show in Section 5.

4 TRACKER IMPLEMENTATION
In the previous section, we introduced a general schema of the

trAcker framework. In this section, we deepen into its implemen-

tation details. We describe and explore the properties of the track-

ing agent that produces the substream termination notifications

(NEOSS). After that, the technique to achieve consistent termination

events order is detailed.

4.1 Bound guarantees
The tracking agent splits the workflow graph into partially ordered

segments and tracks them separately. For each process 𝑝 , we can

generate a list of preceding segments that include a set of incom-

ing messages generators𝑊𝑝 for the process. As soon as all these

segments contain no elements of a substream, the agent sends to a

process NEOSS.
To track the messages path through segments, the agent receives

SND/RCV reports containing a segment identifier and a list of pred-

icates the message satisfies. The agent aggregates this information

into the table illustrated in Table 3.

Table 3: trAcker table: a general example

Notified Predicate Segment Substream elements

✓ h(x)

A No
B No

q(x)

A No
B Yes

✓ z(x)

A No
B No

There are several possible methods to build the indicator that the

segment contains elements from a substream using the reports from

processes. Our implementation uses the trick applied in Apache

Storm to monitor the completeness of processing [23].

Each report is labeled by a random number𝑋 , and this number is

the same for the send action and the corresponding receive action.

This trick makes it easy to check if the segment contains a full set

of 𝑆𝑁𝐷/𝑅𝐶𝑉 pairs for a message: XOR operation for all numbers

received from the chain will turn into 0. The result of the XOR

A B

Tracking
agent

send
h(x)=1
X=5

receive
h(x)=1
X=5

send
h(x)=1
X=12

receive
h(x) =1
X=12

Figure 8: Reports example

operation can accidentally become zero, but the probability of this

event is controlled by the length of the random number 𝑋 so that

it can be neglected in practice [23].

Figure 8 illustrates the reports with random numbers. The el-

ements satisfying a predicate ℎ(𝑥) flow through a dataflow. The

first process generates an output and sends the SND report with

𝑋 = 5. The corresponding RCV report by the second process also

has 𝑋 = 5 because this process receives the element from the first

one. The second process sends a new element that satisfies ℎ(𝑥)
further, and the new SND report with𝑋 = 12 is produced. The third

operator receives this element and also produces an RCV report

with 𝑋 = 12. If there are no more elements such that ℎ(𝑥) = 1,

then we can send NEOSS for the substream defined by ℎ(𝑥) ends
because 5 XOR 5 XOR 12 XOR 12 = 0. Table 4 illustrates the actual
trAcker table for the mentioned technique.

Table 4: trAcker table: XORing technique example

Notified Predicate Segment Segment XOR XOR

✓ h(x)

A 000 000
B 000

q(x)

A 000 110
B 110

✓ z(x)

A 000 000
B 000

Due to the associativity of XOR, we can optimize tracking agent

incoming traffic by aggregating reports locally within the processes.

For each process, we introduce a local tracking agent component.

It serves as a mediator between the process and the global agent,

buffering the outgoing reports and flushing them periodically.

The flushing window is the parameter that allows us to balance

the service traffic and latency between the actual substream ter-

mination (the event from the data producer) and the termination

event. Note that substreams last a finite time period by definition,

so we assume that each process sends aggregated reports a constant

number of times that does not depend on the number of substreams

and processes. Therefore, the amount of extra network traffic for

the reports is 𝑂 (|Π |), so the total estimation with the overhead on

the notifications is 𝑂 (𝐾 |Π |).

4.2 Consistent termination events order
If the order of NEOSS is consistent, the order of termination events

will be consistent as well. To achieve consistent order of NEOSS, we

need to define 𝑡 (𝑀) such that the order on 𝑡 (𝑀) respects the order
of input elements. All reports that processes send to the tracking

agent should be labeled with 𝑡 (𝑀). In turn, the tracking agent sends
the NEOSS elements according to the order on 𝑡 (<).

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Artem Trofimov, Nikita Sokolov, Nikita Marshalkin, Igor Kuralenok, and Boris Novikov

Table 5 illustrates the trAcker table in case of consistent NEOSS

order. Column min t(x) indicates the minimal 𝑡 (𝑥) among the ele-

ments that satisfy the corresponding predicate. The tracking agent

sends notifications for the substream if the 𝑋𝑂𝑅 value is 0 and all

substreams that contain elements with less min t(x) have finished
(notifications have been produced). Therefore, NEOSS for the sub-

stream defined by the predicate ℎ(𝑥) is not sent until the NEOSS
for the predicate 𝑞(𝑥) is generated.

Table 5: trAcker table: consistent NEOSS order example

Notified Predicate min t(x) XOR

waits for q(x) finish h(x) 5 000

q(x) 4 110

✓ z(x) 1 000

If input elements arrive through a single node, 𝑡 (𝑥) can denote

the monotonic system time of the element 𝑥 arrival. If there are

multiple source processes, one can use time oracle agent [31] as

a service for generation a monotonic sequence of unique times-

tamps. However, in this case, there is a need to manage one more

subsystem.

A simple technique to build 𝑡 (𝑥) without extra agents bases

on systematic synchronization of the system clocks. We call this

method and associated labels coarse time. Assume that clock dif-

ferences are no more than some fixed 𝛿 , which we reference as

synchronization slack. Let 𝜏 (𝑥) be precise physical time of input

data item 𝑥 arrival, and 𝑠 (𝑥) be local system time of the source

node where 𝑥 arrived. The true order of events 𝜏 (𝑑1) > 𝜏 (𝑑2)
coming from different sources can be sometimes restored by their

system timestamps 𝑠 (𝑑1) and 𝑠 (𝑑2). If these timestamps differ more

than time synchronization slack, then the order is clear: 𝑠 (𝑑1) >
𝑠 (𝑑2) + 𝛿 ⇒ 𝜏 (𝑑1) > 𝜏 (𝑑2).

This fact allows us to define 𝑡 (𝑥) such that 𝑡 (𝑥) = [𝑠 (𝑥)/𝛿]. This
way we make 𝑡 (𝑥) less precise, but this trick gives us an ability to

compare global time associated by different source nodes. If 𝑡 (𝑥1) is
greater than the (𝑡 (𝑥2) + 1) then their order is defined even if they

arrived from different source nodes: 𝑡 (𝑥1) > 𝑡 (𝑥2) + 1 ⇒ 𝜏 (𝑥1) >
𝜏 (𝑥2). Therefore, the order on 𝑡 (𝑥) coincides with the order of

input elements, so it is suitable for the defined problem. Here is

a summary of the mechanism that ensures consitent termination

events order:

(1) On input item arrival, source node gets the system timestamp

(2) The system timestamp is shrunk up to synchronization slack

(practically we achieve 10ms slack)

(3) Each report for the tracking agent is labeled by the result of

𝑡 (𝑥)
(4) Tracking agent sends NEOSS according to the order on 𝑡 (𝑥)
(5) Termination events are generated according to the order of

NEOSS arriving

5 EXPERIMENTS
In previous sections we put several statements out: trAcker frame-

work provides low service traffic, low latency between the actual

substream termination and termination event receiving, and SPE

.

. . .

. . .

. . .

. . .

. . .
Workers

Operators

Figure 9: Physical execution graph for experiments

throughput does not depend on the substream size. In the exper-

imental part of the paper, we will examine these properties on

synthetic and real-world examples.

As a baseline approach, we utilize the punctuations-basedmethod

employed in many state-of-the-art stream processing systems such

as Flink [7], Storm [24], Heron [15], IBM Streams [13]. To the best

of our knowledge, the punctuation framework is the only existing

general-purpose substream management technique.

To compare tracking mechanisms, we have to implement them

on top of a single SPE. Otherwise, the performance could be affected

by inequalities in serialization, network protocols, etc. The difficulty

here is that the tracking mechanism is usually a core part of SPE,

and the implementation is often optimized for it.

We implemented both punctuations and trAcker techniques on

top of FlameStream [17]. It is an open-source Java-based SPE that

allows tracking mechanism customization by its design. In [16],

authors demonstrated that the performance of the FlameStream

is comparable to state-of-the-art SPE Flink. None of the system-

specific features were exploited during the implementation of sub-

stream management methods. All experiments are performed on

virtual machines with a dual-core CPU and 4 GB RAM from one of

the major cloud providers.

In the next sections, we will explore our system in four experi-

mental setups:

Service traffic: the last setup aims to demonstrate the asymptotic

behavior of competitive approaches. We show that our theoretical

estimation meets practical measurements.

Latency: we explore both the notification latency (a delay between

a moment when a substream ends and the reception of the termi-

nation event for this substream) and the end-to-end processing

latency. We compare the trAcker and punctuations approaches on

synthetic and real-world workloads in soft and firm bounds.

Maximum SPE throughput: we study the influence of the no-

tification mechanism on the maximum throughput of the system

using the synthetic workload. This experiment shows an overhead

induced by a substream management on regular data processing.

Substream management for cyclic graphs: trAcker framework

supports substream management for cyclic dataflows. In this setup,

we demonstrate the benefits of this approach for a novel problem

setup: state smart caching.

In our study, we use a common synthetic workload shown in

Fig. 9. All vertices pass an input element to the next operation. On

each step, items are re-partitioned (round-robin). This shape of the

physical execution graph allows us to measure the properties of

the system with the growth of key switches in a workload. This

Substream Management in Distributed Streaming Dataflows DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

(a) Traffic by graph size (b) Traffic by number of VMs (c) Traffic by tracking frequency

Figure 10: Service network traffic of punctuations approach and various trAcker setups

(a) Notification latency by graph size
(b) Notification latency by VMs
number

(c) Notification latency by granular-
ity

Figure 11: Notification latency

setup has no computational overhead while covering many realis-

tic scenarios. Graphs with few vertices (under 30) may fit almost

any acyclic streaming pipeline [2]. Longer instances of this work-

load correspond to flattened iterative dataflows such as PageRank

or Connected Components [19, 29]. We reference this synthetic

workload as RR-𝑁 , where 𝑁 is the number of steps.

5.1 Service traffic
In the theoretical part of the paper, we put a statement that the

service traffic of the trAcker grows linearly with the number of

processes and granularity of the tracking. In this section, we prove

this statement in practice.

We can measure the extra load provided by tracking mechanisms

in a number of service messages sent over the network. In trAcker,

there are several types of these messages: SND and RCV reports,

and NEOSS. In the baseline approach, all service messages are

punctuations. If it is not specified, the graph size is 30, the number

of VMs is 15, and the granularity is 10.

Figure 10 demonstrates the dependency between service net-

work messages and the size of the logical graph, the number of

computational nodes, and the granularity of tracking. The extra

service traffic is generated by 50𝐾 input elements sent with 100

items per second arrival rate.

As shown in Figure 10a, service traffic for punctuations linearly

depends on the dataflow size because each new logical vertex adds

network broadcasts of punctuations on a physical level. Depen-

dency from the number of computational nodes is quadratic
3
due

to the need to broadcast punctuations to each node after each oper-

ator, as it is demonstrated in Figure 10b.

3
At first glance, the dependency may seem linear, but please note that the X-axis

covers range from 10 to 20, and the Y-axis is log-scaled

Figure 10c indicates that the number of sent service messages

for punctuations also directly depends on the tracking granularity.

For example, the system should broadcast punctuations after each

streaming element in every operator to implement tracking of

individual items.

In the case of trAcker, service traffic depends on the logical graph

size and the number of machines because their product forms the

number of processes. The growth has a linear trend but can be

significantly reduced with the local trAcker optimization. Tracker

without optimizations provides 1.5-5x less service traffic than puc-

tuations. Local trAcker optimization allows the system to reduce

traffic up to 30 times compared to the punctuations.

5.2 Microbenchmarks: notification latency
One of the key performance metrics is the latency of notifications:

a delay between a moment when a substream ends and the recep-

tion of the termination event. This time is added to any operation

triggered by termination events [7, 16]. For example, Flink finishes

its state snapshotting protocol for the epoch (set of input elements)

and delivers corresponding output elements to data consumers only

after receiving a notification that the whole epoch is completed.

We examine end-to-end latency in the next section.

In this experiment, we measure the notification latency as an

interval duration between a promise from the data source that it

will never generate substream elements and the reception of the

termination event for this substream. As an experimental workload,

we use synthetic workload RR-𝑁 . We investigate the dependency

between the notification latency and cluster sizes, the length 𝑁 of

the workload, and the granularity of tracking (number of elements

within a substream). Figure 11 shows the results of the experiment.

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Artem Trofimov, Nikita Sokolov, Nikita Marshalkin, Igor Kuralenok, and Boris Novikov

The notification latency of a punctuations-based technique de-

pends on the graph and cluster sizes and the granularity of tracking

as figures 11a,11b, and 11c indicate. These results are in-line with

the overhead induced by punctuations shown in Section 2.3. Notifi-

cation latency of trAcker slightly fluctuates but does not directly

depend on the investigated parameters.

The difference in latency between the punctuations and trAcker

appears because each operator in a dataflow must wait for punctu-

ations from all partitions to sign off the previous operator to send

it further to ensure the correctness.

5.3 End-to-end latency
In the previous section, we demonstrated that trAcker framework

provides lower notification latency than the baseline. In this part,

we show how this difference influences end-to-end latency. We

use real-world workloads: a window join and a state snapshot.

We measure the latency of window join as a time between the

last element of the window enters the system and the output of

window aggregation. We also examine how substreammanagement

techniques can affect the duration of taking a state snapshot. In both

scenarios, end-to-end latency is directly affected by the notification

latency.

5.3.1 Window join. For the windowed join scenario, we apply

NEXMark benchmark [26] designed to inspect the performance

of streaming queries. This benchmark extends the XMark bench-

mark [22] online auction model, where users can start auctions

for items and bid on items. We accept Query 8 from the NEXMark

benchmark, defined as follows: Select people who have entered the
system and created auctions in the last period. This query can be

implemented using windowed join of persons and auctions. We

apply 10 seconds window and 500 RPS per node input rate.

Figure 13a illustrates the results. The end-to-end latency (a time

between the last element of the window enters the system and the

output of window aggregation) within trAcker is under 20ms for

all setups, while within punctuations, latency grows up to 300ms

on 30 nodes. After that, it fluctuates slightly. This behavior can

be explained by the fact that the process waits for punctuations

from all channels to produce query results. However, with the

growth of machines number, the probability that some node delays

punctuation increases. After some limit (30 nodes in our case),

many nodes start to delay punctuations, so the latency achieves its

maximum.

5.3.2 State snapshotting. As we mentioned above, an important

application of substream tracking mechanisms is state snapshotting.

Typically, state snapshotting is implemented as follows: a stream-

ing system divides input records into the contiguous substreams

called epochs. When an operator entirely processes all items from a

particular epoch, it blocks all inputs and persistently saves its local

state. Each operator receives the termination event for an epoch

and starts to save its state independently from other operators.

Flink [7], Storm [24], IBM Streams [13], and Heron [15] implement

this state snapshotting scheme. All these systems use punctuation-

based techniques to provide notifications for operators.

Punctuations mechanism can imply latency overhead on this

protocol. The overhead is caused by blocking an operator after

the first punctuation is received until the operator receives punc-

tuations from all inputs. This behavior is known as punctuations
alignment issue [7]. In the case of trAcker, an operator must buffer

elements from the next epoch until the NEOSS for the previous

epoch is received.

Note that local state snapshotting process can be asynchronous in

the modern SPEs such as Flink [7]. It implies that local snapshotting

duration is not necessarily linked to the state size. Nevertheless, the

latency of the termination signal for an epoch directly affects the

latency of data elements during global state snapshotting because

an operator cannot start process elements from a new epoch until

it receives a termination signal for the previous one.

Figure 12 demonstrates SPE latency spikes during state snap-

shotting for punctuations and trAcker, depending on the persistent

save duration. In general, trAcker provides 50-120 milliseconds

fewer latency spikes. This difference can be significant for latency-

conscious applications [32]. The low notification latency explains

this difference, as we demonstrated in Section 5.2.

5.4 End-to-end throughput
In this experiment, our goal is to find how the substream manage-

ment influences the maximum throughput of an SPE. We measure

the median latency of RR-30 workload using a cluster of 20 nodes,

depending on the input rate (input elements per millisecond). The

growth of median latency indicates system overloading. Input rate

that corresponds to the point where latency starts to grow indicates

a sustainable throughput [14].
Figure 13b shows that a system without tracking at all starts to

be overloaded at ∼ 9𝐾 requests (items) per second input rate. The

system with the finest-grained trAcker setup sustains ∼ 7𝐾 RPS

throughput. Overloading with the punctuations-based approach

depends on the granularity of tracking: the finest-grained setup

does not sustain even 1𝐾 RPS, while the setup with the granularity

of 10 has ∼ 2𝐾 RPS throughput. Punctuations achieve similar to

trAcker throughput (∼ 5𝐾 RPS) only when they are injected once

per 50 input elements.

This experiment shows that punctuations significantly bound

throughput of regular processing within the fine-grained setups.

It is explained by the heavy extra network traffic that we demon-

strated in Section 5.1. Note that this additional traffic goes through

the same network channels as ordinary data items to ensure that

punctuations do not overtake ordinary records. On the other hand,

trAcker provides less additional system load due to lower extra

network usage and the exploiting of additional network channels.

5.5 Substream management for cyclic graphs
One more practical application of substream tracking is in-memory

state optimization. In practice, we often use either short-life keys

such as session-id, cart-id, or a subset of a wide variety of keys,

such as users of social networks. The state associated with such

keys should be removed from the memory once the key becomes

obsolete. We refer to this task as distributed garbage collection.
Substream management can be used to solve this task because

we can consider elements bearing a specific key as a substream. In

this experiment, we use a trAcker for distributed garbage collection
and compare this approach to more widespread caching techniques.

Substream Management in Distributed Streaming Dataflows DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

(a) 100 ms snapshot duration (b) 500 ms snapshot duration (c) 1000 ms snapshot duration

Figure 12: SPE latency spikes during state snapshotting

(a) Nexmark window join scenario (b) Overhead on an SPE throughput (c) State smart cache scenario

Figure 13: Real-world scenarios and maximum throughput

In the experimental setting, we solve a depth search problem for

a graph of Twitter users. This task is relevant for social recommen-

dation systems and requires both scalability and freshness of the

results due to the dynamic nature of the graph and the number of

nodes. An SPE is a suitable candidate host for such a solution due

to the low latency (freshness) requirement.

Within this model, the user is the key, and the set of her sub-

scribers is the state associated with the key. A stream of queries

of user neighborhoods is issued to the system. A resulting set of

unique users is expected in return. The execution graph for the

depth search problem is cyclic, so trAcker suits this task.

We compare distributed garbage collection approach with LRU

caching for this task. The keys are removed from the hot set as soon

as none of the currently processed messages contain a reference for

it. We used a ratio of cache-misses during processing as a measure

of the effectiveness of the memory management mechanism.

In this experiment, we used 4 nodes and fixed the request per

second rate to 20. In the Fig. 13c results of this experiment are

presented. With the growth of the allocated memory, the cache be-

comes effective, though the difference between distributed garbage
collection and LRU (with or without optimal TTL) counts in order

of magnitude. We believe that this type of task needs to be resolved

with GC instead of caching.

6 RELATEDWORK
A comparison between various substream management techniques

is summarized in Table 1. To the best of our knowledge, the punctu-

ations framework is the only substream management mechanism

that supports arbitrary predicates. Flink [7], Storm [25], Samza [21]

apply punctuations for both window aggregations and state snap-

shotting problems. MillWheel [1] has another state management

model but also uses punctuations as a window end indicator.

Spark Streaming [30] method for state pruning is based on the

punctuations as well. A recent work [4] proposes an idea that a

centralized agent can aggregate watermarks. This agent computes

minimum over all of its node watermarks and then broadcasts

reports. However, the aggregation and reporting techniques are not

detailed, so the formal properties of this approach are unclear.

Several techniques aim to track some specific properties of a

stream but do not provide the general substream management

framework. Apache Storm Acker [23] is a method for completeness

monitoring that also uses XOR operation properties under the

hood. It allows SPE to detect if some element has been lost during

the processing. However, Acker does not provide mechanisms for

tracking arbitrary substreams, so it is not applicable for window

termination and state pruning problems.

Naiad [19] has a mechanism for tracking the progress of dis-

tributed iterative computations. This method can be used to check

the convergence criteria of iterative algorithms or limit iterations.

The main commonality between the Naiad progress tracker and

the trAcker is that information about iterations or substreams is

propagated through network channels which are not used for data

processing. However, in trAcker all termination events are pro-

vided by the tracking agent, while in Naiad each node generates

progress events based on information from all other nodes. It im-

plies that the amount of extra traffic required by this mechanism is

quadratic from the number of nodes even if all updates go through

a centralized accumulator.

Another technique for tracking centralized iterative processing

is introduced in [10], but it is not yet adapted for distributed pro-

cessing. Although these methods are robust for progress tracking,

they are also currently unsuitable for window termination or state

pruning problems.

7 CONCLUSION
In this work, we formalized the problem of substreamsmanagement.

We designed and implemented a new substreams management

technique called trAcker that does not require injecting service

elements directly into the stream. Instead, wemark all data elements

with ordered labels and use the distributed agent, which notifies

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Artem Trofimov, Nikita Sokolov, Nikita Marshalkin, Igor Kuralenok, and Boris Novikov

operators that a substream ends. Our approach has the following

features:

• Cyclic dataflows support: the method is suitable for prob-

lems that require non-linear executions: graph traversing,

iterative algorithms, etc. We evaluated this feature within

the real-life problem.

• Lowoverhead:we showed that our implementation achieves

the lower bound of service traffic overhead.We demonstrated

that trAcker insignificantly affects the throughput of an SPE

in practice.

• Fine-grained substreams support: trAcker framework

is suitable for substreams consisting of a small number of

elements. This feature is achieved due to low traffic overhead

and another way of notifications propagation.

The centralized agent is a limitation of a solution presented in

this paper. The first problem is scalability. Due to the page limit, we

omitted the discussion about the distributed trAcker agent. Fault

tolerance is another problem because we should ensure recovery

of the trAcker agent in case of failures. We are leaving both topics

for future work.

REFERENCES
[1] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman,

Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013.

MillWheel: Fault-tolerant Stream Processing at Internet Scale. Proc. VLDB 6, 11

(Aug. 2013), 1033–1044.

[2] T. Akidau, S. Chernyak, and R. Lax. 2018. Streaming Systems: The What, Where,
When, and how of Large-scale Data Processing. O’Reilly Media, Incorporated.

https://books.google.ru/books?id=48-BAQAACAAJ

[3] Ahmed Awad, Jonas Traub, and Sherif Sakr. 2019. Adaptive Watermarks: A Con-

cept Drift-based Approach for Predicting Event-Time Progress in Data Streams..

In EDBT. 622–625.
[4] Edmon Begoli, Tyler Akidau, Slava Chernyak, Fabian Hueske, Kathryn Knight,

Kenneth Knowles, Daniel Mills, and Dan Sotolongo. 2021. Watermarks in Stream

Processing Systems: Semantics and Comparative Analysis of Apache Flink and

Google Cloud Dataflow. Proc. VLDB Endow. 14, 12 (2021), 3135–3147. http:

//www.vldb.org/pvldb/vol14/p3135-begoli.pdf

[5] Edmon Begoli, Tyler Akidau, Fabian Hueske, Julian Hyde, Kathryn Knight, and

Kenneth Knowles. 2019. One SQL to Rule ThemAll - an Efficient and Syntactically

Idiomatic Approach to Management of Streams and Tables. In Proceedings of the
2019 International Conference on Management of Data (Amsterdam, Netherlands)

(SIGMOD ’19). ACM, New York, NY, USA, 1757–1772. https://doi.org/10.1145/

3299869.3314040

[6] Paris Carbone. 2018. Scalable and Reliable Data Stream Processing. Ph.D. Disser-
tation. KTH Royal Institute of Technology.

[7] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas

Tzoumas. 2017. State Management in Apache Flink&Reg;: Consistent Stateful

Distributed Stream Processing. Proc. VLDB 10, 12 (Aug. 2017), 1718–1729.

[8] P. Carbone, G. Fóra, S. Ewen, S. Haridi, and K. Tzoumas. 2015. Lightweight

Asynchronous Snapshots for Distributed Dataflows. ArXiv e-prints (June 2015).
arXiv:1506.08603 [cs.DC]

[9] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,

and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a

single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

[10] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel

Fisher, John C Platt, James F Terwilliger, and John Wernsing. 2014. Trill: A high-

performance incremental query processor for diverse analytics. Proceedings of
the VLDB Endowment 8, 4 (2014), 401–412.

[11] K. Mani Chandy and Leslie Lamport. 1985. Distributed Snapshots: Determining

Global States of Distributed Systems. ACM Trans. Comput. Syst. 3, 1 (Feb. 1985),
63–75. https://doi.org/10.1145/214451.214456

[12] Vincenzo Gulisano, Yiannis Nikolakopoulos, Marina Papatriantafilou, and Philip-

pas Tsigas. 2016. Scalejoin: A deterministic, disjoint-parallel and skew-resilient

stream join. IEEE Transactions on Big Data (2016).
[13] Gabriela Jacques-Silva, Fang Zheng, Daniel Debrunner, Kun-Lung Wu, Victor

Dogaru, Eric Johnson, Michael Spicer, and Ahmet Erdem Sariyüce. 2016. Con-

sistent regions: Guaranteed tuple processing in ibm streams. Proceedings of the
VLDB Endowment 9, 13 (2016), 1341–1352.

[14] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri

Heiskanen, and Volker Markl. 2018. Benchmarking distributed stream data

processing systems. In 2018 IEEE 34th International Conference onData Engineering
(ICDE). IEEE, 1507–1518.

[15] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher

Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.

2015. Twitter Heron: Stream Processing at Scale. In Proc. of the 2015 ACM SIGMOD
Intnl. Conf. on Management of Data (Melbourne, Victoria, Australia) (SIGMOD ’15).
ACM, New York, NY, USA, 239–250. https://doi.org/10.1145/2723372.2742788

[16] Igor E. Kuralenok, Artem Trofimov, Nikita Marshalkin, and Boris Novikov. 2018.

Deterministic Model for Distributed Speculative Stream Processing. In Advances
in Databases and Information Systems, András Benczúr, Bernhard Thalheim, and

Tomáš Horváth (Eds.). Springer International Publishing, Cham, 233–246.

[17] Igor E. Kuralenok, Artem Trofimov, Nikita Marshalkin, and Boris Novikov. 2018.

FlameStream: Model and Runtime for Distributed Stream Processing. In Proceed-
ings of the 5th ACM SIGMODWorkshop on Algorithms and Systems for MapReduce
and Beyond (Houston, TX, USA) (BeyondMR’18). ACM, New York, NY, USA,

Article 8, 2 pages. https://doi.org/10.1145/3206333.3209273

[18] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore John-

son, and David Maier. 2008. Out-of-order Processing: A New Architecture for

High-performance Stream Systems. Proc. VLDB Endow. 1, 1 (Aug. 2008), 274–288.
[19] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,

and Martín Abadi. 2013. Naiad: A Timely Dataflow System. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,

Pennsylvania) (SOSP ’13). ACM, New York, NY, USA, 439–455. https://doi.org/

10.1145/2517349.2522738

[20] Hannaneh Najdataei, Yiannis Nikolakopoulos, Marina Papatriantafilou, Philippas

Tsigas, and Vincenzo Gulisano. 2019. Stretch: Scalable and elastic deterministic

streaming analysis with virtual shared-nothing parallelism. In Proceedings of the
13th ACM International Conference on Distributed and Event-based Systems. 7–18.

[21] Shadi A. Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon Bringhurst,

Indranil Gupta, and Roy H. Campbell. 2017. Samza: Stateful Scalable Stream

Processing at LinkedIn. Proc. VLDB Endow. 10, 12 (Aug. 2017), 1634–1645.
[22] Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J Carey, Ioana

Manolescu, and Ralph Busse. 2002. XMark: A benchmark for XML data manage-

ment. In VLDB’02: Proceedings of the 28th International Conference on Very Large
Databases. Elsevier, 974–985.

[23] storm-site 2018. Apache Storm documentation, Guaranteeing Message Pro-
cessing. https://storm.apache.org/releases/current/Guaranteeing-message-

processing.html

[24] storm-site 2018. Apache Storm documentation, Storm State Management. http:

//storm.apache.org/releases/1.2.1/State-checkpointing.html

[25] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M.

Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,

Nikunj Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. 2014. Storm@Twitter. In

Proceedings of the 2014 ACM SIGMOD International Conference on Management of
Data (Snowbird, Utah, USA) (SIGMOD ’14). ACM, New York, NY, USA, 147–156.

https://doi.org/10.1145/2588555.2595641

[26] Pete Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. 2008. NEXMark–
A Benchmark for Queries over Data Streams (DRAFT). Technical Report. Technical
report, OGI School of Science & Engineering at OHSU, Septembers.

[27] Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. 2003. Exploiting

Punctuation Semantics in Continuous Data Streams. IEEE Trans. on Knowl. and
Data Eng. 15, 3 (March 2003), 555–568. https://doi.org/10.1109/TKDE.2003.

1198390

[28] Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. 2003. Exploit-

ing punctuation semantics in continuous data streams. IEEE Transactions on
Knowledge and Data Engineering 15, 3 (2003), 555–568.

[29] Chen Xu, Markus Holzemer, Manohar Kaul, and Volker Markl. 2016. Efficient

fault-tolerance for iterative graph processing on distributed dataflow systems.

In 2016 IEEE 32nd International Conference on Data Engineering (ICDE). IEEE,
613–624.

[30] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica. 2012.

Discretized Streams: An Efficient and Fault-tolerant Model for Stream Processing

on Large Clusters. In Proc. of the 4th USENIX Conf. on Hot Topics in Cloud Ccom-
puting (Boston, MA) (HotCloud’12). USENIX Association, Berkeley, CA, USA,

10–10.

[31] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. 2017. The End of

a Myth: Distributed Transactions Can Scale. Proc. VLDB Endow. 10, 6 (Feb. 2017),
685–696. https://doi.org/10.14778/3055330.3055335

[32] Yunhao Zhang, Rong Chen, and Haibo Chen. 2017. Sub-millisecond stateful

stream querying over fast-evolving linked data. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles. ACM, 614–630.

[33] Zhan Zhang, Wenhao Li, Xiao Qing, Xian Liu, and Hongwei Liu. 2021. Research

on Optimal Checkpointing-Interval for Flink Stream Processing Applications.

Mobile Networks and Applications (2021), 1–10.

https://books.google.ru/books?id=48-BAQAACAAJ
http://www.vldb.org/pvldb/vol14/p3135-begoli.pdf
http://www.vldb.org/pvldb/vol14/p3135-begoli.pdf
https://doi.org/10.1145/3299869.3314040
https://doi.org/10.1145/3299869.3314040
https://arxiv.org/abs/1506.08603
https://doi.org/10.1145/214451.214456
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.1145/3206333.3209273
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2517349.2522738
https://storm.apache.org/releases/current/Guaranteeing-message-processing.html
https://storm.apache.org/releases/current/Guaranteeing-message-processing.html
http://storm.apache.org/releases/1.2.1/State-checkpointing.html
http://storm.apache.org/releases/1.2.1/State-checkpointing.html
https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1109/TKDE.2003.1198390
https://doi.org/10.1109/TKDE.2003.1198390
https://doi.org/10.14778/3055330.3055335

	Abstract
	1 Introduction
	2 Substream management
	2.1 Processing model
	2.2 Substream management events
	2.3 Punctuations framework

	3 Tracker framework
	3.1 Answering Q1: How to monitor in-flight elements?
	3.2 Answering Q2: How to ensure bound guarantees?
	3.3 Answering Q3: How to provide the consistent termination events order?
	3.4 Answering Q4: What are the functional and performance properties of trAcker?

	4 Tracker Implementation
	4.1 Bound guarantees
	4.2 Consistent termination events order

	5 Experiments
	5.1 Service traffic
	5.2 Microbenchmarks: notification latency
	5.3 End-to-end latency
	5.4 End-to-end throughput
	5.5 Substream management for cyclic graphs

	6 Related Work
	7 Conclusion
	References

