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ABSTRACT

Most state-of-the-art SPEs use punctuations to divide a stream into
bounded substreams of messages, such as epochs and windows.
The punctuation approach is powerful but has limitations: it does
not support cyclic dataflows, is poorly scalable in some cases due
to intensive use of broadcasts, and becomes inefficient when the
number of chunks or cluster size becomes significant. We introduce
a new substream tracking technique called trAcker that overcomes
the limits of punctuations. We experimentally evaluate the prop-
erties of trAcker in both synthetic and real-world environments.
Experiments show that our technique outperforms punctuations
for a large number of substreams and efficiently handles real-world
cyclic dataflows.
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1 INTRODUCTION

The processing of a data stream without insights into the proper-
ties of its data elements can be challenging. For example, it may
be unclear when a system can prune outdated keyed state [27],
release windowed aggregations [5], or create a state snapshot for
an epoch [7].
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Each of these scenarios is a particular case of a problem of moni-
toring substreams emergence and termination that we call a sub-
stream management problem. A substream is a part of the stream
such that all its elements satisfy some predicate. For example, in the
case of state pruning, the predicate is [a data element key equals to
K], for time window aggregations, the predicate is [a data element
has a timestamp less than T ], and for state snapshotting it is [a data
element belongs to the epoch E].

In this paper, we focus only on two signals: substream start and
its termination. Tracking a start of a substream is a straightforward
task: the first event of a substream will naturally trigger its start. On
the contrary, generating a substream termination event is a chal-
lenging task, and various properties may be required by practical
problems:

e Deterministic windowed join' requires an order of termina-
tion signals to respect the order of input elements (termina-
tion events from data producers) [12, 20].

e An epoch is a substream that an SPE should process atomi-
cally. A termination event for an epoch should arrive before
any elements of the next epoch [8].

e State pruning problem does not require any specific prop-
erties from termination events. However, late termination
event receiving may cause sub-optimal memory utilization.

A popular substream management method is the punctuations
framework [28]. The main idea behind this framework is to divide
the stream by injecting special elements called punctuations that
define substreams “borders”. These special elements are propagated
via the same network channels as data elements. While the punc-
tuation approach is robust and easy to implement, it has several
limitations.

Punctuations are not applicable for cyclic dataflows in a gen-
eral case because elements belonging to a substream can remain
in transit within a cycle for an uncertain time [6]. The technique
proposed in [7] mitigates this issue for the state snapshotting prob-
lem. The main idea of this technique is to include in a snapshot all
in-transit elements (possibly from previous epochs) within a cycle
and then resend them on rollback. However, it provides a solution
for a specific problem that does not allow a system to determine a
substream termination for cyclic dataflows using punctuations.

The high network overhead forms another limitation. Network
traffic complexity for this method is O(K|II|?), where |II] is the
number of processes and K is the number of substreams because

Lgiven the same sequences of input tuples, the same output tuples will be produced
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Figure 1: trAcker framework: tracking agent aggregates in-
formation about substreams and produces NEOSS

each process should propagate punctuations to all output channels.
This complexity boundary covers the worst case when all processes
are interconnected. However, SPEs prefer to distribute the work
among nodes evenly to ensure scalability [1, 9, 15]. This load bal-
ancing implies that each process effectively occupies channels to all
other processes. The worst-case complexity boundary is tight for
scenarios when an execution graph contains at least one operator
that repartitions data.

Substreams can be fine-grained: for example, each user session
defines a substream. If there are a lot of small substreams, an ineffi-
cient substream management system can degrade the latency [4]
and the throughput of an SPE [18] or affect the performance of
state checkpointing [33].

In this work we formalize the substream management problem
and show that the network traffic overhead of the punctuations
framework is far from the optimal. We also formally define prop-
erties of a substream management technique required by various
problems such as state snapshotting to ensure that a newly pro-
posed method satisfy them.

We introduce a new substream management framework called
trAcker. Figure 1 shows the high-level scheme of our method.
Within this framework, we use a dedicated agent that receives
information about substreams from the entire SPE and sends back
end-of-substream notifications (NEOSS). NEOSS messages are prop-
agated through this agent without broadcasting between processes,
reducing the amount of extra traffic. Such propagation method is
suitable for cyclic dataflows because there is no need to forward
service traffic through the cycles.

Basic comparison between the trAcker framework and its alter-
natives is shown in Table 1. Regarding network traffic, |II| is the
number of computational nodes and K is the number of substreams.
We can outline that the punctuations framework is the only sub-
stream management mechanism that supports arbitrary predicates
for substreams, so we use it as a baseline approach in the exper-
iments. The commonalities and differences between the trAcker
framework and alternative solutions are detailed in Section 6.

In summary, our contributions are as follows:

(1) We provide a formal model of substream management. This
model allows us to compare the properties of various sub-
stream management systems.

(2) We present a novel substream management technique that
achieves a lower bound of network traffic overhead.
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Table 1: An overview of substream management techniques

Method ‘ Arbitrary predicates ‘ Cycles ‘ Traffic ‘
Punctuations + - O(K[TI[*)
MillWheel* - N/A N/A
Naiad* - O(K|m[%)
Acker - O(K|1I|)
trAcker + O(K|11))

*progress tracker

(3) We demonstrate trAcker performance in comparison to a
state-of-the-art approach on diverse workloads.

The rest of the paper is organized as follows: Section 2 formalizes
the substream management problem and indicates its main prop-
erties. In Section 3, we introduce a general design of the trAcker
framework and demonstrate the properties of this substream man-
agement solution. Section 4 summarizes the implementation of
trAckerin Section 5, we show that the proposed technique is scal-
able and can outperform alternatives employed in state-of-the-art
stream processing engines. The relevant prior research is outlined
in Section 6. Finally, we discuss our conclusions in Section 7.

2 SUBSTREAM MANAGEMENT

First, in this section, we formalize a stream processing engine based
on Chandy-Lamport definition of a distributed system. Then we
define the substream management problem based on the notions
from the proposed model. Finally, we discuss a state-of-the-art
substream management technique called punctuations.

2.1 Processing model

Typically, distributed stream processing engines are shared-nothing
runtimes that continuously ingest input elements, transform them
according to a logical dataflow graph, and deliver output elements.
The logical dataflow graph consists of user-defined operators. Op-
erators are functions of a single input data element that produce
a number of output data elements. Operators can be stateless or
stateful: output elements may depend on the current state. A logical
graph is mapped to a physical, distributed graph on deployment.

Table 2: Notations used throughout the paper

Process (node in a physical execution graph)

Iy, Op input and output channels of a process p

funcy, (U, M) | User-defined operator run by process p. It receives
current operator state U and an incoming message
M

1 The set of all processes

K Number of substreams

c A network channel between processes
&

Sp

The set of all network channels
State of the process p consists of a mailbox B, and
a state U of func,

mbc, Mailbox controller of a process p

ep Event of a process p

Pred(e) Propositional formula defined on events
pred(M) Propositional formula defined on messages
t(M) Coarse time label
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Figure 2: Structure of the SPE process

Commonly, a single logical operator can be deployed on multi-
ple computational nodes. Further, we denote physical instances of
logical operators as processes.

A deployed physical graph is a distributed system and could
be described in terms of the Chandy-Lamport model [6, 11]. In
this model, the authors introduce events that allow observing a
state of the entire system. This approach allows defining system-
wide guarantees: in the original paper, it is used to introduce the
notion of consistent state, we use this approach for the definition of
a substream management problem.

Following the notation from [6, 11], the distributed system is
observed with events. Each event is a tuple of 5 elements e =
(p,s,s’, ¢, M), where p is one of the deployed processes, s and s’
are state of the process before and after processing, c is one of
network FIFO channels that connect processes, and M is a message
generated during processing. The generated event M comes to a
channel state C until the destination process receives it. Processes
and channels form a physical graph of the system G = {II, §}. We
denote all input channels as I;, and output channels as O,.

In a stream processing engine, we need to specify a process p
to reflect the nature of SPE. In our model we split a process into
two separate blocks: business logic handler (BLH), and mailbox con-
troller (MBC). The first block encapsulates a user-defined operator.
In this model user-defined operator does not directly communicate
with other processes in the system. Instead of this, it receives and
generates messages — data elements that are tagged by their source
and destination. Further delivery of these messages along the com-
munication channels is then handled by a mailbox controller that
preserves the order of message generation. Figure 2 illustrates the
scheme of a process. This system layout is not new, and it is widely
used in practice (Akka, YDB, Millwheel, etc.).

More formally, when a process receives a message, it is handled
by the mailbox controller that puts this message into a special seg-
ment of the process state (mailbox Bp). The business logic handler
gets a message provided by MBC and triggers a user-defined op-
erator. The user-defined operator processes the data element that
the message contains and generates an arbitrary number of out-
going messages. BLH puts generated messages back to a mailbox.
MBC sends outgoing messages along communication channels to
destination processes. All mailbox controller operations respect
the order of messages in the mailbox. If a user-defined operator
has a state Up, the joined process state will consist of the mailbox
and this state s = Up U Bp. In the Chandy-Lamport paradigm this
algorithm produces the following events within a process:

e Communication events: (recv, p, M), (send, p, M) — these
events are handled by mailbox controller
e Processing of an incoming message (proc, p, M, M)
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Lets translate these events into 5-tuple language. Communica-
tion events move a message between communication channel and
mailbox section of the state:

(recv, p, M) = (p, sp,sj’, =Up U (Bp U{M}),cqp, M) 1)
(send, p, M) = (p,sp.s, = Up U (Bp \ AM}), cpasems M) (2)

Note that we need to be able to get a destination process directly
from the message dst(M). This function translates a destination
element from logical dataflow graph nodes, used in user-defined
code, to physical communication channels between processes. A
practical case of this abstraction is a sharding scheme for some key:
user-defined procedure emits event for some key, and a system is
responsible for finding a proper physical channel to deliver this
message.

Incoming message processing does not influence the communi-
cation channels and only ingest results of a message processing

(U, M) = func, (U, M):
{proc,p, M,M’) = (p, sp,s;, = Ul; U (Bp \ {M}UM’),0,0) (3)

Note that in this case, M’ may contain more than one message.
Following the Chandy-Lamport model, we assume processes are
single-threaded, so within the specific process p, all events are
ordered by a local causal order relation <: eg, e;, . e;,, ....Please
note that each process has its own local causal order relation, so
we do not assume any total order among events from different
processes. This model is indeed practical, e.g., implemented in actor-
based systems.

2.2 Substream management events

2.2.1  Substreams lifespan. For each process, we want to get the
first and the last element of a substream. The first one could be
found naturally when it emerges, but verification that there will
be no more events of a substream could be problematic. Strict sub-
stream termination guarantee consists of two parts: source must
promise that no more messages from substream may emerge, and
the system must ensure it contains no substream messages. The
first task requires a contract with a particular data source and is
thus out of scope for this paper, though it is discussed in relevant
literature [3]. Instead, we focus on the second task; this is chal-
lenging due to distributed nature of the system and the lack of a
common message lifetime limit. This difficulty increases with the
introduction of cycles into dataflow. Crucially, processes are not
isolated from one another, and substream messages can move from
one process to another. That is why we need to observe all in-flight
messages in the system.

Formally, a substream can be defined via the propositional for-
mula Pred(e) for any system event. We have to use system events
as they are ordered inside each process and can define a border of a
substream. Sometimes it is more practical to induce this predicate
to messages (pred(M)) involved in processing: Pred(e) = (e =
(proc, p, M, M")) A pred(M).

In this paper we are interested in such Pred(e), that has limited
lifespan within a process and want to know when substream starts
and terminates: Vp,HtOP, tf : e : etg <pe<p etf,Pred(e) & Ve’ :
€ <p €’,—Pred(e’). Lets boil this formula down: for each process

p in the system there must be two event indices tg for substream



DEBS 22, June 27-30, 2022, Copenhagen, Denmark

Substream Termination

000000

>
>

processing
events

Figure 3: Substream management: soft bound

start and t‘f for its termination, such that events satisfying Pred
must be between these indices.

Substream management problem is to define a special mechanism
that estimates substream bound for each process. In our system
model, we need to define a system event that indicates the bound
of a substream for a process. We call this termination event or
end-of-substream event, this appropriate :

(eoss, p, Pred) = (p, Bp, By U eoss(Pred), 0, 0) (4)

As we mentioned before, some problems require certain prop-
erties of the termination events. For example, the state pruning
problem does not require any special properties, while for the state
snapshotting problem, the substream management system should
detect the exact substream bound. In the following sections, we
formalize these properties.

2.2.2  Soft bound. Many applications that apply substream manage-
ment systems do not require any special properties of termination
events. In this case, we denote the guarantee provided by such
events as soft bound, because termination events indicate only the
fact that the substream ended some time ago, and other input ele-
ments could be processed after that. More formally, we define the
soft bound guarantee of the termination event (end-of-substream)
(eossso 1, p, Pred) as follows:

Ve, e > (eosssory, p, Pred) = —Pred(e) (5)

Figure 3 illustrates this notion. Terms a, b, c, d... denote ordered
processing events of a process p. The substream ends after event
c. Note that there are several other events between the end-of-
substream and c. This is the property of a soft bound guarantee: if
(eosssofy, p, Pred) occurs, all subsequent elements do not satisty
the predicate, but it is not necessarily the exact substream “border”.

2.2.3  Firm bound. The guarantee that any new event will not
satisfy the predicate is sufficient for many real-life problems, e.g.,
SPE can initiate process state pruning on such events. However,
some problems require a firm bound: guarantee that the substream
ends exactly after the termination event.

For example, epoch-based snapshotting protocol [8, 13] relies
on the notion of epoch. An epoch is a special substream that must
be processed atomically. Therefore, the SPE requires the termina-
tion event for a given epoch to occur immediately after the last
processing event for that epoch. Otherwise, the snapshot can be
inconsistent, capturing elements from multiple epochs. To sup-
port such scenarios, the end-of-substream event (eoss;,m, p, Pred)
should satisfy the following condition:

(€0s firm. p, Pred) = inf <, (eossso r1, p, Pred) (6)
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Figure 4: Substream management: firm bound

Unlike the soft bound, within the firm guarantee, the first ele-
ment outside the substream Pred must be ordered after the firm
bound event in the process p. This position satisfies the first possi-
ble soft bound in the events ordering. Figure 4 illustrates the notion
of the firm bound. As in the previous example, terms a, b, c,d...
denote ordered processing events of a process p. However, in this
case, event (€oss fiym, p, Pred) occurs right after the substream ter-
minates.

2.2.4 Consistent termination events order. Some specific applica-
tions, including the mentioned earlier epoch-based snapshotting
method and techniques for enforcing deterministic processing [16]
require an order of termination events to be synchronized with
the order of substreams last elements processing. For example, if
termination events are reordered, then snapshots for consecutive
epochs can be inconsistent. Another example is deterministic join
that also requires the defined order of termination events [12].

Substream 1 Substream 2

ends ends
1 1

SRGHOJOHOR®

>

»

oX=HO.

processing
events

Figure 5: An example of termination events reordering

Termination events reordering in case of the soft bound guar-
antee is illustrated in Figure 5. Terms a, b, c, d... denote ordered
processing events of a process p. Although the substream contain-
ing events a, b terminates earlier, the end-of-substream event for
this substream occurs after the termination event for the substream
containing events d, e.

Let e] and e; be the last elements of substreams defined by
predicates Pred; and Pred,. Termination events (eoss, p, Pred;)
and (eoss, p, Predy) are consistently ordered iff:

el >p e, & (eoss,p,Predy) >, (eoss, p, Predy) (7)

2.2.5 Optimal traffic overhead. A vital performance property of
a substream management system is the amount of extra network
traffic. Let |II| be a number of processes, and K be a number of
substreams.

LEmMMA 1. The network overhead induced by a substream manage-
ment system cannot be lower than O(K|II|).
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Proor. We assume one by one processing of substreams for
them to be isolated (e.g. epochs). When a substream management
system detects the termination of a substream, each stateful process
should be informed about this. Hence, at least one network message
(termination notification) must be received by each process for each
substream. ]

2.3 Punctuations framework

The main idea behind the punctuations framework is to inject
special data elements P? red into data stream one per substream.
These elements, called punctuations, flow down the workflow as
ordinary data elements. The injector promises that all elements after
punctuations won’t satisfy the predicate. Hence, the punctuation
itself defines the “border” of a substream.

Figure 6 illustrates the punctuations framework. Green elements
indicate elements that belong to some substream, while red ele-
ments do not. As we can see, punctuations play the role of delimiter
between the substream elements and all further items.

Figure 6: Punctuations handling by a single process

Processes within SPE do not apply user-defined operators to
punctuations. Instead, each process p propagates punctuation mes-

sages nged to all outgoing channels c,q € Op when it receives
corresponding punctuations from all input channels I;,.

LEMMA 2. Generating event by following rule make it a soft bound
of the substream pred:

Vg € I, 3P0 € B, VM € B: —~pred(M) v dst(M) #p  (8)

Proor. We can use indirect proof. Let {proc, p, M*, M) be a pro-
cessing event that happens after the soft bound termination event
but pred(M*). In other words, there is a message M=, pred(M™)
that arrived after all punctuations for the predicate pred had been
arrived. According to the definition of a distributed system from
Section 2.1, message M* could emerge either from the mailbox of
a process or from incoming channels. The emergence from the
mailbox contradicts the condition of the termination event genera-
tion rule VM € B : =pred(M) V dst(M) # p. On the other side, the
emergence from an incoming channel contradicts the condition that

punctuations arrived from all channels Vg € I, Epgged because
message M cannot be reordered with punctuations by design. O

To satisfy the firm bound guarantee, the mailbox controller
should block processing of all incoming messages from a chan-
nel as soon as it receives punctuation from this channel. In [7] such
behavior is called watermark (punctuation) alignment. Formally we
can rewrite this requirement in terms of event ordering:
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LEMMA 3. A soft bound becomes firm if a process event order satisfy
the following conditions:

d
Vey, ez = (reco, p, Pg::p ), Be’ = (proc, p, Mg, p.M'),e1 <p e’ <p e
)

ProoF. Let us suppose that there is a message Mgy of a next
substream that was processed after the last element of the current
substream, but before the generation of a bound event. This message
either came from the channel q before a punctuation from that
channel generating a bound, or was processed before all channels
delivers their punctuations. The first case could happen if Mg,
was reordered with the punctuation along the processing path
and contradicts with FIFO processing logic (see previous proof
for details). The second case is impossible because of processing
limitations introduced by 9. O

3 TRACKER FRAMEWORK

A substream management system should inform all processes that a
substream ends, so the amount of extra traffic cannot be lower than
O(K||11]]). To achieve this lower bound, one can apply an additional
agent (process) that receives information about substreams from
processes and sends back information about terminated substreams.

In this case, the fact that substream terminates is propagated
through this agent without broadcasting between processes, so
the amount of extra traffic can be linear by the number of pro-
cesses. Such propagation method is suitable for cyclic dataflows
because there is no need to forward service traffic through the
cycles. Therefore, we design a tracking agent that:

(1) Receives signals from data producers that a substream has
terminated.

(2) Watches for in-flight elements and substreams.

(3) Notifies dataflow processes when the substream ends for
them, i.e., when they stop receiving elements which satisfy
some predicate.

The general scheme of the trAcker mechanism is shown in Fig-
ure 1. A special tracking agent receives signals from data sources,
fetches information about in-flight elements, and then decides
where to send end-of-substream notifications (NEOSS).

This substream notifications distribution can be more efficient
in terms of network traffic but provides new challenges. Before
diving into implementation details, we should answer the following
questions regarding trAcker framework:

Q1 How to monitor in-flight elements? To detect that a sub-
stream ends, the tracking agent should receive the corresponding
signal from data producers and ensure no substream in-flight ele-
ments.

Q2 How to ensure bound guarantees? While there are no
longer special elements in the stream that denotes the substream
end, we need to design soft and firm substream bound conditions
based on NEOSS from the shared agent.

Q3 How to provide a consistent termination events order?
Unlike punctuations, trAcker notifications are completely async
with dataflow elements because they go through another network
channel. Hence, dataflow items and notifications are not ordered,
making it hard to ensure that the notifications order is consistent.
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Q4 What functional and performance properties does the
trAcker have? trAcker framework is designed to eliminate the
limitations of punctuations framework. We should demonstrate
that it is suitable for cyclic dataflows as well as can provide lower
network overhead.

3.1 Answering Q1: How to monitor in-flight
elements?

To start tracking of a data element the system sends an SND(pred, M, 0)

notification to the tracker. Then each process sends the following
report messages on each (proc, p, M, M’} event:

(1) For all output elements m € M’ for all substreams they
belong to pred(m) = 1: SND(pred, m, p)

(2) For the input element M and all satisfying substreams pred(M) =

1: RCV (pred, M, p)

Further in this paper, we will denote them as SND report and RCV
report. Note that this communication scheme is heavily optimized
in practice. The order of SND and RCV messages is important
because each pair of these events forms a chain ring, and sending
SND before RCV links these rings together. We can use these chains
to track data element processing for the whole workflow graph or
its part.

Chains of SND and RCV messages allow the trAcker to track
processing of a data element along with a workflow graph. This idea
is not new and used in Apache Storm Acker but despite the technical
similarity of the core idea?, Acker and trAcker play different roles
in SPE. Acker ensures that the system entirely processed an input
element and notifies the user when the processing runs out of time.
trAcker tracks an entire substream and allows to define its bounds.

3.2 Answering Q2: How to ensure bound
guarantees?

To detect a substream bound, a process needs to ensure that input
channels will provide no more elements of this substream. In case
of the punctuations framework, the watermark messages carry
this guarantee. In case of shared agent, NEOSS messages play the
same role. We can assume that each input channel ¢ comes from
a segment of the workflow W, graph. NEOSS is sent to a process
when:

o for all incoming channels ¢ € I;, corresponding segment W,
contains no elements of the substream in-flight (has unpaired
SND report);

e all data providers have promised to send no more elements
of the substream.

It is easy to show that we can join workflow segments for all in-
coming channels W, = Ucer, W, and track a single subgraph W),
per process. Using the properties of NEOSS now we can define a
soft bound criterion:

LEMMA 4. Soft substream bound could be generated by following
rule:

INEOSS € Bp,YM € By : ~pred(M) V dst(M) # p (10)

2Good old XOR commutativity trick.
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Figure 7: trAcker framework: tracking agent sends NEOSS
elements according to the order on t(m)

ProoFr. Ifa substream data element is processed after the defined
point in events order, it either comes from the mailbox or from
one of the incoming channels ¢ € I,. The first case contradicts
¥m € By : ~pred(m). The second case could happen because a new
substream element enters the system (source broke the promise)
or a substream element inside the W), without the SND/RCV chain
(contradicts with SND/RCV chains generation rule). O

To satisfy the firm bound guarantee, one needs to hold elements
that do not belong to the substream in the mailbox until NEOSS has
arrived. This technique is quite similar to the punctuations align-
ment behavior mentioned in the previous section. If this condition
is satisfied, then (eossfiy,, Pred) = (eosss, 1, Pred) for the trAcker.

3.3 Answering Q3: How to provide the
consistent termination events order?

In the punctuations framework, such order is provided by design
because punctuations and ordinary data items go through the same
FIFO network channels. In trAcker this order should be enforced.
Assume that SPE assigns to the messages a special totally ordered
label t(M). All messages generated by single processing inherit the
label from the input message.

In this case, if the order on ¢ (M) coincides with the order of input
elements, then trAcker can produce the NEOSS events according to
this order as well. In other words, trAcker can reorder the NEOSS
events such that they will be consistent with the substreams order.
An example of this concept is shown in Figure 7. The substream
containing element with ¢ = 1 ends before the substream containing
element with t = 2. As we can see, the order of NEOSS elements
from trAcker coincides with t(M).

A vital question here is how to implement the assignment of
ordered labels t(m). One way is to use the time oracle service [31]
which can provide totally ordered labels. A simple alternative is
discussed in the next section.

3.4 Answering Q4: What are the functional and
performance properties of trAcker?

trAcker does not require regular broadcasting of the elements to

all computational nodes because all service traffic goes through

a single agent. This change allows trAcker to have the following
features by design:
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(1) Cyclic dataflows support. Because the tracking agent is
monitoring the properties of in-flight elements without di-
rectly injecting service items into a dataflow, trAcker does
not have the problem of throwing them through a cycle.

(2) Low network overhead. Processes can send reports once
per a fixed time period, so there is a constant time of such
reports per a finite substream. The reports require O(|II|)
extra messages, while the NEOSS events O(K|II|). The total
amount is O(K|II| + |II|) = O(K|II|) that is optimal for the
substream management problem.

(3) Low latency and impact on SPE throughput. Punctua-
tions can be stuck by other data elements if they are sent
with some delay after the last substream element. In trAcker,
service traffic goes through other network channels that can
reduce latency between actual substream termination and
the corresponding event. Together with the low amount of
service traffic, this scheme does not significantly reduce the
throughput of an SPE, as we show in Section 5.

4 TRACKER IMPLEMENTATION

In the previous section, we introduced a general schema of the
trAcker framework. In this section, we deepen into its implemen-
tation details. We describe and explore the properties of the track-
ing agent that produces the substream termination notifications
(NEOSS). After that, the technique to achieve consistent termination
events order is detailed.

4.1 Bound guarantees

The tracking agent splits the workflow graph into partially ordered
segments and tracks them separately. For each process p, we can
generate a list of preceding segments that include a set of incom-
ing messages generators W), for the process. As soon as all these
segments contain no elements of a substream, the agent sends to a
process NEOSS.

To track the messages path through segments, the agent receives
SND/RCV reports containing a segment identifier and a list of pred-
icates the message satisfies. The agent aggregates this information
into the table illustrated in Table 3.

Table 3: trAcker table: a general example

[ Notified [ Predicate [ Segment [ Substream elements ]

A N
v h(x) = -
A No
&) B Yes
A No
v 7(x) B No

There are several possible methods to build the indicator that the
segment contains elements from a substream using the reports from
processes. Our implementation uses the trick applied in Apache
Storm to monitor the completeness of processing [23].

Each report is labeled by a random number X, and this number is
the same for the send action and the corresponding receive action.
This trick makes it easy to check if the segment contains a full set
of SND/RCV pairs for a message: XOR operation for all numbers
received from the chain will turn into 0. The result of the XOR

DEBS 22, June 27-30, 2022, Copenhagen, Denmark

Tracking
agent
send receive send receive
h(x)=1 h(x)=1 h(x)=1 i) =1
X=5 X=5 X=12 X=12

010

Figure 8: Reports example

operation can accidentally become zero, but the probability of this
event is controlled by the length of the random number X so that
it can be neglected in practice [23].

Figure 8 illustrates the reports with random numbers. The el-
ements satisfying a predicate h(x) flow through a dataflow. The
first process generates an output and sends the SND report with
X = 5. The corresponding RCV report by the second process also
has X = 5 because this process receives the element from the first
one. The second process sends a new element that satisfies h(x)
further, and the new SND report with X = 12 is produced. The third
operator receives this element and also produces an RCV report
with X = 12. If there are no more elements such that h(x) = 1,
then we can send NEOSS for the substream defined by h(x) ends
because 5 XOR 5 XOR 12 XOR 12 = 0. Table 4 illustrates the actual
trAcker table for the mentioned technique.

Table 4: trAcker table: XORing technique example

[ Notified | Predicate | Segment [ Segment XOR | XOR |

v h(x) ‘g ggg 000
A 000

a) B 110 110
A 000

v 7(x) 5 000 000

Due to the associativity of XOR, we can optimize tracking agent
incoming traffic by aggregating reports locally within the processes.
For each process, we introduce a local tracking agent component.
It serves as a mediator between the process and the global agent,
buffering the outgoing reports and flushing them periodically.

The flushing window is the parameter that allows us to balance
the service traffic and latency between the actual substream ter-
mination (the event from the data producer) and the termination
event. Note that substreams last a finite time period by definition,
so we assume that each process sends aggregated reports a constant
number of times that does not depend on the number of substreams
and processes. Therefore, the amount of extra network traffic for
the reports is O(|II|), so the total estimation with the overhead on
the notifications is O(K|II|).

4.2 Consistent termination events order

If the order of NEOSS is consistent, the order of termination events
will be consistent as well. To achieve consistent order of NEOSS, we
need to define (M) such that the order on t(M) respects the order
of input elements. All reports that processes send to the tracking
agent should be labeled with t(M). In turn, the tracking agent sends
the NEOSS elements according to the order on ¢(<).
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Table 5 illustrates the trAcker table in case of consistent NEOSS
order. Column min t(x) indicates the minimal #(x) among the ele-
ments that satisfy the corresponding predicate. The tracking agent
sends notifications for the substream if the XOR value is 0 and all
substreams that contain elements with less min #(x) have finished
(notifications have been produced). Therefore, NEOSS for the sub-
stream defined by the predicate h(x) is not sent until the NEOSS
for the predicate g(x) is generated.

Table 5: trAcker table: consistent NEOSS order example

[ Notified [ Predicate [ mint(x) | XOR |
waits for q(x) finish h(x) 5 000
q(x) 4 110
v 7(x) 1 000

If input elements arrive through a single node, #(x) can denote
the monotonic system time of the element x arrival. If there are
multiple source processes, one can use time oracle agent [31] as
a service for generation a monotonic sequence of unique times-
tamps. However, in this case, there is a need to manage one more
subsystem.
A simple technique to build ¢(x) without extra agents bases
on systematic synchronization of the system clocks. We call this
method and associated labels coarse time. Assume that clock dif-
ferences are no more than some fixed §, which we reference as
synchronization slack. Let 7(x) be precise physical time of input
data item x arrival, and s(x) be local system time of the source
node where x arrived. The true order of events 7(d;) > 7(dz)
coming from different sources can be sometimes restored by their
system timestamps s(dj) and s(d2). If these timestamps differ more
than time synchronization slack, then the order is clear: s(d;) >
s(d2) + 6 = ©(dy) > ©(da).
This fact allows us to define ¢(x) such that t(x) = [s(x)/8]. This
way we make #(x) less precise, but this trick gives us an ability to
compare global time associated by different source nodes. If ¢ (x1) is
greater than the (#(x2) + 1) then their order is defined even if they
arrived from different source nodes: t(x1) > t(x2) +1 = 7(x1) >
7(x2). Therefore, the order on t(x) coincides with the order of
input elements, so it is suitable for the defined problem. Here is
a summary of the mechanism that ensures consitent termination
events order:
(1) Oninput item arrival, source node gets the system timestamp
(2) The system timestamp is shrunk up to synchronization slack
(practically we achieve 10ms slack)

(3) Each report for the tracking agent is labeled by the result of
t(x)

(4) Tracking agent sends NEOSS according to the order on #(x)

(5) Termination events are generated according to the order of
NEOSS arriving

5 EXPERIMENTS

In previous sections we put several statements out: trAcker frame-
work provides low service traffic, low latency between the actual
substream termination and termination event receiving, and SPE
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Figure 9: Physical execution graph for experiments

throughput does not depend on the substream size. In the exper-
imental part of the paper, we will examine these properties on
synthetic and real-world examples.

As abaseline approach, we utilize the punctuations-based method
employed in many state-of-the-art stream processing systems such
as Flink [7], Storm [24], Heron [15], IBM Streams [13]. To the best
of our knowledge, the punctuation framework is the only existing
general-purpose substream management technique.

To compare tracking mechanisms, we have to implement them
on top of a single SPE. Otherwise, the performance could be affected
by inequalities in serialization, network protocols, etc. The difficulty
here is that the tracking mechanism is usually a core part of SPE,
and the implementation is often optimized for it.

We implemented both punctuations and trAcker techniques on
top of FlameStream [17]. It is an open-source Java-based SPE that
allows tracking mechanism customization by its design. In [16],
authors demonstrated that the performance of the FlameStream
is comparable to state-of-the-art SPE Flink. None of the system-
specific features were exploited during the implementation of sub-
stream management methods. All experiments are performed on
virtual machines with a dual-core CPU and 4 GB RAM from one of
the major cloud providers.

In the next sections, we will explore our system in four experi-
mental setups:

Service traffic: the last setup aims to demonstrate the asymptotic
behavior of competitive approaches. We show that our theoretical
estimation meets practical measurements.

Latency: we explore both the notification latency (a delay between
a moment when a substream ends and the reception of the termi-
nation event for this substream) and the end-to-end processing
latency. We compare the trAcker and punctuations approaches on
synthetic and real-world workloads in soft and firm bounds.
Maximum SPE throughput: we study the influence of the no-
tification mechanism on the maximum throughput of the system
using the synthetic workload. This experiment shows an overhead
induced by a substream management on regular data processing.
Substream management for cyclic graphs: trAcker framework
supports substream management for cyclic dataflows. In this setup,
we demonstrate the benefits of this approach for a novel problem
setup: state smart caching.

In our study, we use a common synthetic workload shown in
Fig. 9. All vertices pass an input element to the next operation. On
each step, items are re-partitioned (round-robin). This shape of the
physical execution graph allows us to measure the properties of
the system with the growth of key switches in a workload. This
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setup has no computational overhead while covering many realis-
tic scenarios. Graphs with few vertices (under 30) may fit almost
any acyclic streaming pipeline [2]. Longer instances of this work-
load correspond to flattened iterative dataflows such as PageRank
or Connected Components [19, 29]. We reference this synthetic
workload as RR-N, where N is the number of steps.

5.1 Service traffic

In the theoretical part of the paper, we put a statement that the
service traffic of the trAcker grows linearly with the number of
processes and granularity of the tracking. In this section, we prove
this statement in practice.

We can measure the extra load provided by tracking mechanisms
in a number of service messages sent over the network. In trAcker,
there are several types of these messages: SND and RCV reports,
and NEOSS. In the baseline approach, all service messages are
punctuations. If it is not specified, the graph size is 30, the number
of VMs is 15, and the granularity is 10.

Figure 10 demonstrates the dependency between service net-
work messages and the size of the logical graph, the number of
computational nodes, and the granularity of tracking. The extra
service traffic is generated by 50K input elements sent with 100
items per second arrival rate.

As shown in Figure 10a, service traffic for punctuations linearly
depends on the dataflow size because each new logical vertex adds
network broadcasts of punctuations on a physical level. Depen-
dency from the number of computational nodes is quadratic 3 due
to the need to broadcast punctuations to each node after each oper-
ator, as it is demonstrated in Figure 10b.

3 At first glance, the dependency may seem linear, but please note that the X-axis
covers range from 10 to 20, and the Y-axis is log-scaled

Figure 10c indicates that the number of sent service messages
for punctuations also directly depends on the tracking granularity.
For example, the system should broadcast punctuations after each
streaming element in every operator to implement tracking of
individual items.

In the case of trAcker, service traffic depends on the logical graph
size and the number of machines because their product forms the
number of processes. The growth has a linear trend but can be
significantly reduced with the local trAcker optimization. Tracker
without optimizations provides 1.5-5x less service traffic than puc-
tuations. Local trAcker optimization allows the system to reduce
traffic up to 30 times compared to the punctuations.

5.2 Microbenchmarks: notification latency

One of the key performance metrics is the latency of notifications:
a delay between a moment when a substream ends and the recep-
tion of the termination event. This time is added to any operation
triggered by termination events [7, 16]. For example, Flink finishes
its state snapshotting protocol for the epoch (set of input elements)
and delivers corresponding output elements to data consumers only
after receiving a notification that the whole epoch is completed.
We examine end-to-end latency in the next section.

In this experiment, we measure the notification latency as an
interval duration between a promise from the data source that it
will never generate substream elements and the reception of the
termination event for this substream. As an experimental workload,
we use synthetic workload RR-N. We investigate the dependency
between the notification latency and cluster sizes, the length N of
the workload, and the granularity of tracking (number of elements
within a substream). Figure 11 shows the results of the experiment.
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The notification latency of a punctuations-based technique de-
pends on the graph and cluster sizes and the granularity of tracking
as figures 11a,11b, and 11c indicate. These results are in-line with
the overhead induced by punctuations shown in Section 2.3. Notifi-
cation latency of trAcker slightly fluctuates but does not directly
depend on the investigated parameters.

The difference in latency between the punctuations and trAcker
appears because each operator in a dataflow must wait for punctu-
ations from all partitions to sign off the previous operator to send
it further to ensure the correctness.

5.3 End-to-end latency

In the previous section, we demonstrated that trAcker framework
provides lower notification latency than the baseline. In this part,
we show how this difference influences end-to-end latency. We
use real-world workloads: a window join and a state snapshot.
We measure the latency of window join as a time between the
last element of the window enters the system and the output of
window aggregation. We also examine how substream management
techniques can affect the duration of taking a state snapshot. In both
scenarios, end-to-end latency is directly affected by the notification
latency.

5.3.1  Window join. For the windowed join scenario, we apply
NEXMark benchmark [26] designed to inspect the performance
of streaming queries. This benchmark extends the XMark bench-
mark [22] online auction model, where users can start auctions
for items and bid on items. We accept Query 8 from the NEXMark
benchmark, defined as follows: Select people who have entered the
system and created auctions in the last period. This query can be
implemented using windowed join of persons and auctions. We
apply 10 seconds window and 500 RPS per node input rate.

Figure 13a illustrates the results. The end-to-end latency (a time
between the last element of the window enters the system and the
output of window aggregation) within trAcker is under 20ms for
all setups, while within punctuations, latency grows up to 300ms
on 30 nodes. After that, it fluctuates slightly. This behavior can
be explained by the fact that the process waits for punctuations
from all channels to produce query results. However, with the
growth of machines number, the probability that some node delays
punctuation increases. After some limit (30 nodes in our case),
many nodes start to delay punctuations, so the latency achieves its
maximum.

5.3.2  State snapshotting. As we mentioned above, an important
application of substream tracking mechanisms is state snapshotting.
Typically, state snapshotting is implemented as follows: a stream-
ing system divides input records into the contiguous substreams
called epochs. When an operator entirely processes all items from a
particular epoch, it blocks all inputs and persistently saves its local
state. Each operator receives the termination event for an epoch
and starts to save its state independently from other operators.
Flink [7], Storm [24], IBM Streams [13], and Heron [15] implement
this state snapshotting scheme. All these systems use punctuation-
based techniques to provide notifications for operators.
Punctuations mechanism can imply latency overhead on this
protocol. The overhead is caused by blocking an operator after
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the first punctuation is received until the operator receives punc-
tuations from all inputs. This behavior is known as punctuations
alignment issue [7]. In the case of trAcker, an operator must buffer
elements from the next epoch until the NEOSS for the previous
epoch is received.

Note that local state snapshotting process can be asynchronous in
the modern SPEs such as Flink [7]. It implies that local snapshotting
duration is not necessarily linked to the state size. Nevertheless, the
latency of the termination signal for an epoch directly affects the
latency of data elements during global state snapshotting because
an operator cannot start process elements from a new epoch until
it receives a termination signal for the previous one.

Figure 12 demonstrates SPE latency spikes during state snap-
shotting for punctuations and trAcker, depending on the persistent
save duration. In general, trAcker provides 50-120 milliseconds
fewer latency spikes. This difference can be significant for latency-
conscious applications [32]. The low notification latency explains
this difference, as we demonstrated in Section 5.2.

5.4 End-to-end throughput

In this experiment, our goal is to find how the substream manage-
ment influences the maximum throughput of an SPE. We measure
the median latency of RR-30 workload using a cluster of 20 nodes,
depending on the input rate (input elements per millisecond). The
growth of median latency indicates system overloading. Input rate
that corresponds to the point where latency starts to grow indicates
a sustainable throughput [14].

Figure 13b shows that a system without tracking at all starts to
be overloaded at ~ 9K requests (items) per second input rate. The
system with the finest-grained trAcker setup sustains ~ 7K RPS
throughput. Overloading with the punctuations-based approach
depends on the granularity of tracking: the finest-grained setup
does not sustain even 1K RPS, while the setup with the granularity
of 10 has ~ 2K RPS throughput. Punctuations achieve similar to
trAcker throughput (~ 5K RPS) only when they are injected once
per 50 input elements.

This experiment shows that punctuations significantly bound
throughput of regular processing within the fine-grained setups.
It is explained by the heavy extra network traffic that we demon-
strated in Section 5.1. Note that this additional traffic goes through
the same network channels as ordinary data items to ensure that
punctuations do not overtake ordinary records. On the other hand,
trAcker provides less additional system load due to lower extra
network usage and the exploiting of additional network channels.

5.5 Substream management for cyclic graphs

One more practical application of substream tracking is in-memory
state optimization. In practice, we often use either short-life keys
such as session-id, cart-id, or a subset of a wide variety of keys,
such as users of social networks. The state associated with such
keys should be removed from the memory once the key becomes
obsolete. We refer to this task as distributed garbage collection.
Substream management can be used to solve this task because
we can consider elements bearing a specific key as a substream. In
this experiment, we use a trAcker for distributed garbage collection
and compare this approach to more widespread caching techniques.
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In the experimental setting, we solve a depth search problem for
a graph of Twitter users. This task is relevant for social recommen-
dation systems and requires both scalability and freshness of the
results due to the dynamic nature of the graph and the number of
nodes. An SPE is a suitable candidate host for such a solution due
to the low latency (freshness) requirement.

Within this model, the user is the key, and the set of her sub-
scribers is the state associated with the key. A stream of queries
of user neighborhoods is issued to the system. A resulting set of
unique users is expected in return. The execution graph for the
depth search problem is cyclic, so trAcker suits this task.

We compare distributed garbage collection approach with LRU
caching for this task. The keys are removed from the hot set as soon
as none of the currently processed messages contain a reference for
it. We used a ratio of cache-misses during processing as a measure
of the effectiveness of the memory management mechanism.

In this experiment, we used 4 nodes and fixed the request per
second rate to 20. In the Fig. 13c results of this experiment are
presented. With the growth of the allocated memory, the cache be-
comes effective, though the difference between distributed garbage
collection and LRU (with or without optimal TTL) counts in order
of magnitude. We believe that this type of task needs to be resolved
with GC instead of caching.

6 RELATED WORK

A comparison between various substream management techniques
is summarized in Table 1. To the best of our knowledge, the punctu-
ations framework is the only substream management mechanism
that supports arbitrary predicates. Flink [7], Storm [25], Samza [21]
apply punctuations for both window aggregations and state snap-
shotting problems. MillWheel [1] has another state management
model but also uses punctuations as a window end indicator.
Spark Streaming [30] method for state pruning is based on the
punctuations as well. A recent work [4] proposes an idea that a
centralized agent can aggregate watermarks. This agent computes

minimum over all of its node watermarks and then broadcasts
reports. However, the aggregation and reporting techniques are not
detailed, so the formal properties of this approach are unclear.

Several techniques aim to track some specific properties of a
stream but do not provide the general substream management
framework. Apache Storm Acker [23] is a method for completeness
monitoring that also uses XOR operation properties under the
hood. It allows SPE to detect if some element has been lost during
the processing. However, Acker does not provide mechanisms for
tracking arbitrary substreams, so it is not applicable for window
termination and state pruning problems.

Naiad [19] has a mechanism for tracking the progress of dis-
tributed iterative computations. This method can be used to check
the convergence criteria of iterative algorithms or limit iterations.
The main commonality between the Naiad progress tracker and
the trAcker is that information about iterations or substreams is
propagated through network channels which are not used for data
processing. However, in trAcker all termination events are pro-
vided by the tracking agent, while in Naiad each node generates
progress events based on information from all other nodes. It im-
plies that the amount of extra traffic required by this mechanism is
quadratic from the number of nodes even if all updates go through
a centralized accumulator.

Another technique for tracking centralized iterative processing
is introduced in [10], but it is not yet adapted for distributed pro-
cessing. Although these methods are robust for progress tracking,
they are also currently unsuitable for window termination or state
pruning problems.

7 CONCLUSION

In this work, we formalized the problem of substreams management.
We designed and implemented a new substreams management
technique called trAcker that does not require injecting service
elements directly into the stream. Instead, we mark all data elements
with ordered labels and use the distributed agent, which notifies
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operators that a substream ends. Our approach has the following
features:

e Cyclic dataflows support: the method is suitable for prob-
lems that require non-linear executions: graph traversing,
iterative algorithms, etc. We evaluated this feature within
the real-life problem.

e Low overhead: we showed that our implementation achieves
the lower bound of service traffic overhead. We demonstrated
that trAcker insignificantly affects the throughput of an SPE
in practice.

e Fine-grained substreams support: trAcker framework
is suitable for substreams consisting of a small number of
elements. This feature is achieved due to low traffic overhead
and another way of notifications propagation.

The centralized agent is a limitation of a solution presented in
this paper. The first problem is scalability. Due to the page limit, we
omitted the discussion about the distributed trAcker agent. Fault
tolerance is another problem because we should ensure recovery
of the trAcker agent in case of failures. We are leaving both topics
for future work.
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