
Event-Based Data-Centric Semantics for Consistent Data
Management in Microservices

Tilman Zuckmantel
University of Copenhagen
Copenhagen, Denmark

tizu@di.ku.dk

Yongluan Zhou
University of Copenhagen
Copenhagen, Denmark

zhou@di.ku.dk

Boris Düdder
University of Copenhagen
Copenhagen, Denmark

boris.d@di.ku.dk

Thomas Hildebrandt
University of Copenhagen
Copenhagen, Denmark

hilde@di.ku.dk

ABSTRACT
There is an emerging trend of migrating traditional service-oriented
monolithic systems to the microservice architecture. However, this
involves the separation of data previously contained in a single
database into several databases tailored to specific domains. De-
velopers are thus faced with a new challenge: features such as
transaction processing, coordination, and consistency preservation,
which were previously supported by the central database, must
now be implemented in a decentralized, asynchronously commu-
nicating, distributed structure. Numerous prior studies show that
these challenges are not met satisfactorily, resulting in inconsistent
system states with potentially detrimental consequences. Therefore,
we propose to design a coordination service that relies on clear
event-based and data-centric formal semantics for microservices
specifying the interaction of cross-microservice transactions with
their respective databases. Furthermore, we provide a formaliza-
tion of consistency properties and outline how they can be used
to support dynamic monitoring as well as enforcement of consis-
tency properties, thereby providing robust microservice systems.
The envisioned architecture can significantly alleviate the develop-
ers’ burden of implementing complicated distributed algorithms to
maintain consistency across decentralized databases.

CCS CONCEPTS
• Software and its engineering → Semantics; • Information
systems → Distributed transaction monitors.

ACM Reference Format:
Tilman Zuckmantel, Yongluan Zhou, Boris Düdder, and ThomasHildebrandt.
2022. Event-Based Data-Centric Semantics for Consistent Data Management
in Microservices. In The 16th ACM International Conference on Distributed
and Event-based Systems (DEBS ’22), June 27–30, 2022, Copenhagen, Denmark.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3524860.3539807

1 INTRODUCTION
An increasing number of enterprises migrate their digital systems
from the traditional monolithic architecture to the so-called mi-
croservice architecture, where components are implemented as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DEBS ’22, June 27–30, 2022, Copenhagen, Denmark
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9308-9/22/06. . . $15.00
https://doi.org/10.1145/3524860.3539807

independent and loosely-coupled applications. In doing so enter-
prises hope to benefit from the following advantages [19, 25]. Firstly,
higher scalability can be achieved by a more fine-grained sys-
tem with individual scaling potential. Secondly, robustness against
server failures and errors can be increased by putting smaller re-
sponsibilities on each component. Furthermore, microservices can
be maintained, tested and deployed individually. Finally, separating
the central database into a database per microservice may lead to
more maintainable data sets for each microservice.

However, in contrast to the benefits that companies expect from
the microservice architecture, problems arise due to a lack of mech-
anisms to enforce data consistency. For example, ACID guaran-
tees for transactions caused by the decentralized management
of databases [16, 19, 22]. Often, transactions depend on data, not
within their microservice, and thus need to access functionality
from other microservices. We call these transactions cross-
microservice transactions. Laigner et al. [19] in their work on cur-
rent challenges of themicroservice architecture outline that in order
to control the exchange of data between microservices, application
developers have to implement mechanisms themselves, resulting in
redundant implementations and degrading data consistency guar-
antees. This paper focuses on two prevalent problems causing data
consistency issues. First, missing transactional guarantees for in-
terleaved cross-microservice transactions and, second, violation of
event causality resulting in causally inconsistent data.

To close the gap and alleviate the burden on microservice devel-
opers, we propose introducing a scalable coordination service that
controls the flow of events between microservices that interleave
in cross-microservice transaction execution. To achieve this, we
envision a novel approach to modeling microservice transactions
semantically as automata, focusing on the interaction of the mi-
croservice with its respective database. We use the composition
of automata to semantically express the interleaving of multiple
cross-microservice transactions and thus create a foundation for
providing transactional guarantees. Furthermore, we propose to
explicitly observe causalities between events using formalized dy-
namic runtime monitors to prevent event causality violations. With
this novel visionary architecture, microservice developers can be
freed from implementing coordination algorithms and protocols
to achieve consistent data management and instead focus on core
business logic.

2 RELATEDWORK
Orchestration is a popular method to coordinate cross-microservice
transactions to achieve transactional guarantees, such as (a sub-
set of) ACID properties [19–21, 26]. Several works have addressed
the orchestration of distributed transactions. Traditional protocols
such as 2PC can be used to achieve atomicity. However, to avoid

https://orcid.org/0000-0001-8194-7981
https://orcid.org/0000-0002-7578-8117
https://orcid.org/0000-0002-0241-7729
https://orcid.org/0000-0002-7435-5563
https://doi.org/10.1145/3524860.3539807
https://doi.org/10.1145/3524860.3539807

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Tilman Zuckmantel, Yongluan Zhou, Boris Düdder, and Thomas Hildebrandt

the blocking nature of 2PC, recently the SAGA pattern has be-
come popular within the microservice community [20, 26]. The
orchestrator-based SAGA pattern can provide atomicity guarantees
without blocking participants by optimistically forwarding events
and applying compensation actions for failed transactions. Both
patterns lack to provide isolation guarantees. Some microservice
development frameworks allow a centralized state store to achieve
transaction isolation [12]. While this approach provides ACID guar-
antees, it violates the modularity of microservices, since generally
decentralized data management is a desirable property for microser-
vices [19]. Furthermore, Laigner et al. envision a centralized scalable
data-store to achieve transactional guarantees [18]. However, their
work lacks a formal semantic model to enforce transactional prop-
erties that we target in this paper. Recently, de Heus et al. have
proposed a programming model for serverless functions that im-
plements distributed transactions using two-phase commit and the
SAGA pattern [10]. Nevertheless, their approach does not consider
chaining multiple functions, which is necessary for microservices.

Moreover, to formally reason about properties of distributed
systems, there are several semantic approaches. Multi-Party Ses-
sion Types have been introduced to formally verify communication
protocols between multiple participants [14]. While session types
can guarantee order and type correctness of messages, they don’t
provide a way to reason about the state change of data. Recently,
Jangda et al. proposed a semanticmodel for serverless functions [15].
By expressing the behavior of serverless functions as operational
semantics, the authors provide a sound implementation that also
reasons about the interaction with a centralized key-value store. Mi-
croservices, however, require more components to be semantically
expressed than serverless functions. In particular, a semantic model
of microservices must be able to capture an individual database per
microservice, a prevalent microservice design pattern. Furthermore,
Ouederni has recently shown a way to model asynchronously com-
municating distributed components using interface automata and
linear transition systems [23]. Following Ouedernies approach it is
possible to formally verify properties such as deadlock freedom and
unexpected recipients, but it is not intended to model interactions
with decentralized databases.

3 PROBLEMATIC SCENARIOS
The basis for the presented problematic scenarios is a microservice
architecture from the domain of e-commerce, consisting of three mi-
croservices. One microservice is responsible for managing orders
(Orders), another for managing payment processes (Payments),
and a final one for managing customers (Customers). Each mi-
croservice consists of several components. Firstly, an individual
key-value store. Secondly, an API that represents the business logic
of the individual microservice, and finally, an event queue that
delegates events to the corresponding API functions. Consequently,
communication in this architecture is event-based and asynchro-
nous. While the literature highlights many challenges in system
development with microservices, we, in this paper, focus on the
following prevalent data consistency problems [8, 19, 24].
(1.) Transactional Guarantees: Figures 1a and 1b show two cross-
microservice transactions from the Orders and the Customers
microservice to place an order for a given customer and delete
a customer, respectively. Figure 1c shows an interleaving of the

placeOrder(id,order):
//req:(4), resp:(5)
let c =
existsCustomer(id);

if(c){
//insertion:(7)
db.insert(id,order);
send(PlaceOrdSucc);}

else{send(PlaceOrdFail);}

(a) Cross-microservice transac-
tion for placing an order for a cus-
tomer if the customer exists.

deleteCustomer(id):
//req:(1), resp:(2)
let o = existsOrdFor(id);
//req:(3), reps:(6)
let p = existsPayFor(id);
if(!(o && p)){

//deletion:(8)
db.delete(id);
send(DeleteSucc);}

else{send(DeleteFail);}

(b) Cross-microservice transac-
tion for deleting a customer if
there are no proceeding orders or
payments.

ORDERS

(8)

(5)

(7)

CUSTOMERS
(6)

(3)

(4) (1) (2)

PAYMENTS

(c) Interleaving of functions illustrated in figure 1a and 1b.
Numbers in the comments of the source code represent num-
bers in the interleaving and determine the global order of
exchanged events.

Figure 1: Implementation of two cross-microservice transac-
tions in two different microservices resulting in a globally
inconsistent state when interleaved as shown in figure 1c.

transactions in which deleteCustomer starts by checking if there
are existing orders for the customer (1-2). It further proceeds by
checking for any uncompleted payments (3). While the Payments
microservice checks upon open payments, the placeOrder trans-
action is triggered in the Orders microservice targeting the same
customer. It starts by checking upon the existence of the customer
(4-5), and because the deleteCustomer transaction is pending, the
customer record still exists. Thus, the returned value will evaluate
to true. Subsequently, the Payments microservice answers with
the result of existing payments (6). Finally, the customer is deleted
from the database while, at the same time, a new order is placed
(7-8). This exemplifies an uncontrolled data race between the two
microservices leading to an inconsistent global state caused by the
decentralized management of databases. While a centralized data-
base in a conventional monolithic architecture ensures transaction
guarantees, it is the task of the application developer to prevent
race conditions in microservices. Possible methods to control cross-
microservice transactions include distributed locking mechanisms,
distributed commit protocols such as 2PC, and orchestrator-based
techniques such as the orchestrator-based SAGA pattern [19, 20, 22].
However, using distributed locking and 2PC implies coupling of
transactions, and the SAGA pattern can not guarantee isolation of
data records. To control the scenario shown here, we are looking
for a solution based on orchestration that additionally provides
isolation guarantees for the specified transactions.
(2.) Causal Consistency: Exemplary consider a scenario in which
a customer requests reimbursement for a product that has been or-
dered. However, due to internal processing details of the Payments
microservice, the payment for this order has not yet been proceeded
successfully. Logically, the system should not allow an event that
represents the request for reimbursement to process until a suc-
cessful payment event has been observed. This connection between

Event-Based Data-Centric Semantics for Consistent Data Management in Microservices DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

HISTORY OF SUCCESSFULLY
 FORWARDED EVENTS

ORDERS

CUSTOMERS

PAYMENTS

INTERLEAVED
TRANSACTIONS

DYNAMIC RUNTIME
MONITORS

ARRIVING EVENTS

e1 e2 e3

ecebea

Figure 2: Visionary Architecture connecting microservices
through a coordinator.

the two events can be interpreted as a happens-before explicit
event causality that implies an order upon the two events and ulti-
mately an order between the operations responsible for proceeding
with a payment and a reimbursement [1, 17]. However, because
functionalities are distributed in many different microservices and
microservices are developed independently from each other, it is
easy to overlook such causalities between events. Consequently, a
solution should support the ability to globally establish such causal-
ities and alert system administrators of violations or even prevent
violations.

4 VISIONARY ARCHITECTURE
Conventional concurrency control mechanisms can not be readily
applied to achieve transactional guarantees for cross-microservice
transactions because the data operations scattered across multiple
microservices are typically not externally observable. Therefore,
we need a mechanism to capture cross-microservice transactions
semantically so that it is possible to globally observe the data oper-
ations of multiple microservice transactions and reason about their
consistency properties. To control the flow of interleaved transac-
tions, we need a way to influence the order in which events are
sent between microservices. This way, we can predict and control
which events, when sent, will lead to safe transaction steps in the af-
fected microservices. To guarantee atomicity, we need a mechanism
that can revise the effect on microservice databases of an aborted
cross-microservice transaction. Furthermore, to prevent duplicated
events, the mechanism must be able to filter events that are not
expected. Finally, to satisfy explicit causality, we propose that a
solution can evaluate temporal causality constraints beyond the
lifetime of one or more interleaved cross-microservice transactions
based on the history of successfully processed events.

Frameworks that attempt to address cross-microservice trans-
actions challenges typically resort to centralized components. The
Axon framework, for example, uses a centralized event-bus com-
ponent for coordination, while Dapr relies on a state store across
multiple microservices to achieve cross-microservice transaction
guarantees [7, 12]. Furthermore, the popularity of the SAGA pat-
tern is growing within the microservice community [19, 20, 26],
which provides a way to control the execution of distributed trans-
action operations through a central orchestrator or choreographies
to achieve a certain degree of atomicity. Our proposal can be seen
as a novel extension of these approaches with formal semantics for
cross-microservice transactions to solve the aforementioned data
consistency problems with a coordinator.

More specifically, we envision a coordinator depicted in figure 2
controlling the order of events respective to the states of microser-
vices. Microservice functions are seen as state transformers, trig-
gered by received events and producing responding events. The
state is reflected in the database, and the state transitioning can
be expressed in the form of an extended interface automaton [9].
Each transition in an automaton represents one or more steps in
the application logic of the microservice function, with CRUD op-
erations being directly represented. In addition to the application
logic of a microservice function, interface automata specify the
input and output of messages. This allows capturing the outgoing
and incoming events during the execution time of a transaction.
Multiple interface automata representing microservice functions
can be composed over the exchange of events [9]. This provides
formal semantics of concurrent transaction execution, focusing on
the data interactions and the event exchange of each microservice.

Microservices that want to initiate operations in other microser-
vices send events to the central coordinator. The central coordinator
can determine, given the current state of the interface automaton
representing the interleaved transactions, whether a state transition
does not compromise transaction guarantees. We can use interface
automaton as a look-ahead of database operations to observe future
database operations on event forwarding. This also includes the
prevention of forwarding duplicated events during a transaction,
since an event that arrives at the central coordinator unexpect-
edly will not be forwarded. In addition, we propose to compose as
interface automaton only transactions that endanger transaction
guarantees in an interleaving. Transactions whose database opera-
tions are non-conflicting, for example, can be considered separately.
Following, the coordinator controls multiple instances of interface
automaton representing interleaved transactions in execution. After
completing interleaved transactions, the corresponding interface
automaton is completed and removed from the coordinator.

We use interface automaton to safeguard transaction guarantees
of interleaved cross-microservice transactions. However, because
automata complete on transaction completion, it is impossible to
observe explicit causality constraints beyond the lifetime of concur-
rent transactions. Therefore, we propose to use dynamic runtime
monitors that reason about explicit causality constraints given
the history of successfully forwarded events respective to arriving
events. There are four main criteria for selecting an approach to
specify and monitor runtime properties: (1) It must be possible to
express relevant properties, such as causal consistency. In particular,
it should be possible to express both safety and liveness properties
and refer to the timing and attributes of events. (2) It should be
possible for the engineer to specify these properties or to derive
them from the code. (3) There must exist effective monitors for the
chosen specification language. (4) There should be techniques for
preventing violations when possible.

To meet these criteria, we propose to derive a specification lan-
guage by taking the best from Metric First-Order Temporal Logic
(MFOTL) [3] and the timed Dynamic Condition Response (DCR)
graph formalism [2]. In [3], Basin et al. use MFOTL to monitor
safety policies similar to the causality properties of microservices.
WhatmakesMFOTL particularly relevant for microservices is that it
allows for both effective monitoring and the specification of timing
and causal properties of events and quantification over values for

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Tilman Zuckmantel, Yongluan Zhou, Boris Düdder, and Thomas Hildebrandt

attributes of events, e.g., the transaction identifiers as exemplified
in the next section. In [2] on the other hand, Basin et al. show how
to apply the formalism of timed DCR graphs to specify, monitor,
and pro-actively timed safety properties. Compared to the work
based on MFOTL, the work in [2] does not allow for quantification
over values but provides an algorithm for proactively preventing
violations of properties by the use of controllable events of the
monitored systems, similar to what is found in supervisory con-
trol systems [5]. Recent work on timed DCR graphs has extended
the formalism to allow for the specification and computations of
values [13] and replication of sub processes [11], which indicates a
possible way for the combination of the use of the techniques in [3]
and [2] to provide adequate monitoring and pro-active prevention
of property violations of timed microservices.

Since we can observe the exact semantics of database operations
performed in individual microservices in the central coordinator, we
can also execute them here. This allows us to take advantage of the
fact that data relevant to the run-time monitors is available in the
central coordinator consistently with the data from themicroservice
without further coordination.

Last, our approach provides a methodology that falls between
orchestration, typically executing business logic in the orchestra-
tor, and choreography-based techniques, which are decentrally
executed. Thus, the developer is faced with a trade-off between
modularity and safety: critical transactions that require strict con-
sistency use the coordinator. If eventual consistency is sufficient,
events do not need to pass the coordinator.

Summarizing the envisioned mechanism solves the problems
stated in the latter section. Using a coordinator following the data-
centric semantics of cross-microservice transactions guarantees
consistency and isolation. The observability of transaction progress
makes it possible to reverse one or more transactions if necessary.
Last, constraints can be added as run-time monitors to ensure ex-
plicit causality to a degree specified by the developer.

5 EVENT-BASED DATA-CENTRIC SEMANTICS
Cross-microservice Transaction Semantics: We envision the
usage of interface automaton to capture the semantics of cross-
microservice transactions [9]. Interface automata define a specifica-
tion of a component by its communication behavior using input and
output messages (denoted by ? and ! respectively) with additional
internal actions (denoted by ;) to transition between states. While
traditional interface automaton supports message exchange, we
need more fine-grained control over the content of events to seman-
tically base decisions on event payloads. Furthermore, a mechanism
is needed to make database interactions observable within an inter-
face automaton to capture the database’s state explicitly. Therefore,
we propose to add three novel elements to the traditional interface
automatonmodel presented in [9]. Figure 3 shows our envisioned in-
terface automata that semantically represent the cross-microservice
transactions in figure 1. (1.) We add the possibility to explicitly add
event payloads to messages as attributes of the event. This is exem-
plarily illustrated by the PO(id,order)? transition semantically
expressing the receiving of an event in figure 3a. Here, id and
order are attributes of the event and used in further automaton
transitions. (2.) We add branching semantics over boolean values to
support branching upon the payload elements of events used, for

PO(id,order)? EC(id)! CE(c)?

[c];
POS!

POF!

; [!c];

(a) Interface Automaton semantically expressing the
transaction in figure 1a. Abbreviations: PO:PlaceOrder,
EC:ExistsCustomer, CE:CustomerExists, POS:PlaceOrderSuccess,
POF:PlaceOrderFailure.

DC(id)? EO(id)! OE(o)?

[o && p];DCS!

EP(id)!

PE(p)?

[!(o && p)];DCF!

;

(b) Interface Automaton semantically expressing the transaction
in figure 1b. Abbreviations: DC:DeleteCustomer, EO:ExistsOrder,
OE:OrderExists, EP:ExistsPayment, PE:PaymentExists,
DCS:DeleteCustomerSuccess, DCF:DeleteCustomerFail.

Figure 3: Visionary interface automata for cross-microservice
transaction semantics.
example, in the interface automaton in figure 3a to decide further
steps in the automaton based on the value of c. (3.) We add CRUD
operations as internal actions to the interface automaton. A CRUD
operation transition defines the type of its action and the database
over which it operates. Transition labelled insert𝛿𝑂 (id,order)
in the interface automaton in figure 3a for example inserts an or-
der for a key with value id into key-value store 𝛿𝑂 of the orders
microservice.

Multiple interface automata can be composed into a new compo-
nent according to their communication exchange. Accordingly, we
propose to use the composition of transactions for an entire seman-
tic representation of a cross-microservice transaction. Composing
the two interface automaton in figures 3a and 3b together with the
cross-microservice requests contained in the respective transactions
yields a new interface product automaton semantically expressing
all paths that the two transactions can interleave with synchronous
communication. While the semantic model does not capture asyn-
chronous communication, it does not prevent microservices from
communicating asynchronously because the coordinator does not
need to know the exact time of events being sent or received to
maintain the automaton state transition. If both transactions start
concurrently, the coordinator will construct the composition, pro-
cess expected events from both microservices, and update the state
respectively. Recap the concurrency problem in the interleaving in
figure 1c. To prevent the problem that arises from the uncontrolled
interleaving shown here, we can use the coordinator to create the
composition of the executed transactions and control the flow of
events between the microservices. Figure 4 shows a relevant excerpt
of this composition to show how a violation of serializability can be
proactively prevented. Here, the path executed by the ordering in
Figure 1c in the composition of the aforementioned transactions is
shown. Note that the read𝛿𝐶 (id) transition represents the lookup
of a customer inside the database of the customer microservice and
is included in the composition because of the cross-microservice
request in figure 1a that checks for the existence of a customer.
The patterned state of the composition indicates the state of the
interleaving inside the coordinator. In the next step of the prob-
lematic interleaving, a PaymentExists event addressed from the

Event-Based Data-Centric Semantics for Consistent Data Management in Microservices DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

OE(o = false);

PE(p = false);[!(o && p)];

Figure 4: Path in an interface automaton representing the
interleaving in figure 1c.

payment microservice to the customer microservice would pass
the coordinator. However, given the semantics of the future steps
executed inside the customer microservice, it is possible to recog-
nize in advance that forwarding this event will cause a read-write
conflict based on the history of transition steps. Here, the transition
read𝛿𝐶 (id) of transaction t1 would conflict with the transition
delete𝛿𝐶 (id) of transaction t2.

Furthermore, because we forward events optimistically, we can
reach a state where no further transitions are safe. To abort a trans-
action, we can extract and compose the operations necessary to
reverse the steps of a transaction from the semantic model. This
is possible because we can trace the path that led to the current
state in the interface automaton and compose information about
executed semantic steps. The composed steps can then be sent to
the corresponding microservices. It is the individual microservices’
responsibility to process these compensation operations.
Distinction from lock managers: It can be conceivable to use a
lock manager to guarantee isolation, but we would need a semantic
representation of microservice transactions to automatically infer
locks centrally to avoid requiring the application developer to man-
ually manage locks. The observable event flow is insufficient to
infer triggered database operations inside microservices. In con-
trast, interface automata can prevent deadlocks proactively by using
the semantics for look-ahead of database operations. Additionally,
interface automata can be used to extract semantic information
needed to abort transactions safely.
Explicit Event Causality Semantics: To observe explicit event
causalities like the reimbursement example from section 3, interface
automata that semantically express interleaving cross-microservice
transactions are insufficient. The reason is that these causalities
need to be observed beyond the lifetime of multiple interleaved
transactions. Therefore, we envision introducing formalized event
constraints defined over the history of successfully forwarded
events that can be translated to dynamic runtime monitors. It is pos-
sible to express explicit event causalities with the help of temporal
logics such as the Metric First Order Temporal Logic (MFOTL) [3].
MFOTL allows to define predicates and quantify over an infinite
domain of individuals, making it a suitable candidate to operate
over a history of events. The following formula shows a formalized
event constraint expressing that for every reimbursement for a
specific 𝑖𝑑 there must have been a successful payment in the past.

□∀id.reimbursement(id) ⇒ ♦paySuccess(id)

Using the results of Basin et al. in [3, 4] it is possible to monitor
such temporal formulas efficiently over a stream of Reimbursement
and PaySuccess events. By combining this approach with the later
work of Basin et al. on proactive enforcement [2] based on timed
DCR graphs, we can also achieve proactive prevention of violations.
Concretely, the following timed DCR-graph expresses that if a

Reimbursement event happens without a preceding PaySuccess,
a ReimbursementFailed event must happen within 60 minutes in
the future:

Reimbursement
60•→ ReimbursementFailed |

PaySuccess →% ReimbursementFailed |
Reimbursement →% PaySuccess

The policy can be enforced using the approach in [2] by making the
ReimbursementFailed action causable, meaning that the monitor
can cause the activity to happen. The causality constraints are de-
fined based on events. Therefore, we do not expose the internal data
of microservices, preserving the encapsulation principle. However,
the event schema must be globally known.
Complexity: Composition of 𝑛 interface automata is exponen-
tial with respect to 𝑛. However, we believe composition can be
efficiently accomplished in the implementation for real-world mi-
croservice systems. First of all, composition of 𝑛 components does
not necessarily lead to an exponential size requirement because
the composition operation expresses synchronous communication.
This means that instead of covering all possible paths of asynchro-
nous communication interleaving, it only captures the synchronous
path, thereby significantly reducing the complexity of the product
automaton. Furthermore, interface automata are not input-enabled.
This means that it is not required to have a transition for each
element of the input alphabet in every state. Following this leads
to fewer transitions in the product automaton.

Second, to monitor cross-microservice transactions, it is not
necessary to construct the composition of two automata. Since the
composition simulates the interleaved execution, it is also possible
to maintain the state in each automaton individually. Whether an
arriving event can perform a state transition must then be decided
based on all interface automata involved in the transaction.

6 OPPORTUNITIES AND CHALLENGES
Several challenges have to be addressed to realize the aforemen-
tioned visionary solution. The first open question is how to generate
interface automata from source code in a microservice. To minimize
the work of the application developer, we ideally seek a mechanism
that automatically extracts as much semantic information about
the source code as possible. Information about data types, refer-
ences within a microservice, and branching via if-conditions can
be extracted by constructing an abstract syntax tree during the
compilation step of the source code. Other information must be
added as follows and is illustrated in figure 5.

(1) Identify cross-microservice transactions to be semantically ex-
pressed as interface automaton.@CrossMicroserviceTransaction
annotation indicates that this business function should be translated
into an interface automaton, adds a globally unique identifier PO
for global dependency resolution and specifies which event triggers
the functions. (2) Resolve cross-microservice dependencies. Here,
inheritance with a generic base class is used to represent cross-
microservice API requests. Overriding the send function allows
for implementing the event forwarding framework-independent
while enriching source code with necessary semantic information.
(3) Identifying the database relevant for the interface automaton.
We envision a wrapper class for the database that requires the
implementation of four CRUD operations. Furthermore, to state

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Tilman Zuckmantel, Yongluan Zhou, Boris Düdder, and Thomas Hildebrandt

class ExistsCustomerRequest extends
CrossMicroserviceAPIRequest<ExistsCustomer,CustomerExists> {
send(e:ExistsCustomer):CustomerExists = {...}}

@CrossMicroserviceTransaction(id=PO,input=PlaceOrder)
placeOrder(id,order):
let db = new DatabaseWrapper(...)
let c:Boolean = new ExistsCustomerRequest()

.send(new ExistsCustomer(id)).then(res => res.payload())
if(c){
db.insert(id,order); reply(PlaceOrdSucc);

} else {reply(PlaceOrdFail);}

Figure 5: Envisioned enrichment of the transaction in Fig. 1a
to generate an interface automaton from source code.
causality constraints conveniently, we envision the usage of a SQL-
like Domain Specific Language (DSL) for stating invariants that are
then translated to formal monitors. The DSL expresses causalities
between events supporting commonly needed invariant patterns as
demonstrated in [19]. Its expressivity is bound by the underlying
formal model of MFOTL [3].

For an efficient implementation, we propose to extend an existing
framework such as Dapr [12] with the global coordinator as an
additional component. We argue that a global coordinator would
not limit the throughput of the system. Essentially, the coordinator’s
tasks can be considered as stream processing jobs. We envision that
techniques of scalable stream processing systems [6] can be applied
to scale the coordinator horizontally. Conflict-free transactions, for
example, do not need to be maintained inside the same instance of
the coordinator. In addition, dynamic runtime monitors that do not
interfere with their observed event types can also be considered in
separate instances.

The visionary semantic elements presented in this paper to solve
the three problems from section 3 do not cover all existing problems.
For example, it is helpful to consider data constraints like foreign
key constraints when deleting data or introducing data invariants
to determine valid data ranges.

7 CONCLUSION
In this work, we have considered three prevalent problems related
to the consistency challenges of decentralized database manage-
ment in current microservice architectures. We propose to capture
the behavior of cross-microservice transactions using automata,
dynamic runtime monitors, and proactive controllers in a coordina-
tor to secure causality relationships between events. We have also
identified several research challenges and opportunities to realize
the envisioned solution. Using this paper’s approach, we believe
we can support more robust microservice systems with stronger
consistency guarantees, removing the burden of implementing con-
sistency measures from the application developer.

ACKNOWLEDGMENTS
Part of the PAPRICAS.org project supported by Independent Re-
search Fund Denmark (DFF.dk).

REFERENCES
[1] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica.

2012. The potential dangers of causal consistency and an explicit solution. In
Proceedings of the Third ACM Symposium on Cloud Computing - SoCC ’12. ACM
Press, San Jose, California, 1–7.

[2] David Basin, Søren Debois, and Thomas Hildebrandt. 2016. In the Nick of Time:
Proactive Prevention of Obligation Violations. I E E E Computer Security Founda-
tions Symposium. Proceedings, 120–134. IEEE Computer Security Foundations
Symposium, CSF ; Conference date: 27-06-2016 Through 01-07-2016.

[3] David Basin, Felix Klaedtke, and Samuel Müller. 2010. Monitoring security
policies with metric first-order temporal logic. In Proceeding of the 15th ACM
symposium on Access control models and technologies - SACMAT ’10. ACM Press,
Pittsburgh, Pennsylvania, USA, 23.

[4] David Basin, Felix Klaedtke, Samuel Müller, and Eugen Zălinescu. 2015. Monitor-
ing Metric First-Order Temporal Properties. J. ACM 62, 2 (May 2015), 1–45.

[5] Bertil Brandin and Walter Wonham. 1994. Supervisory control of timed discrete-
event systems. Automatic Control, IEEE Transactions on 39 (03 1994), 329 – 342.

[6] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink™: Stream and Batch Processing in a
Single Engine. IEEE Data Eng. Bull. 38 (2015), 28–38.

[7] Binildas Christudas. 2019. Axon Microservices and BASE Transactions. In
Practical Microservices Architectural Patterns. Apress, Berkeley, CA, 779–812.

[8] Binildas Christudas. 2019. Transactions and Microservices. In Practical Microser-
vices Architectural Patterns. Apress, Berkeley, CA, 483–541.

[9] Luca de Alfaro and Thomas A. Henzinger. 2001. Interface automata. ACM
SIGSOFT Software Engineering Notes 26, 5 (Sept. 2001), 109–120.

[10] Martijn de Heus, Kyriakos Psarakis, Marios Fragkoulis, and Asterios Katsifodimos.
2021. Distributed transactions on serverless stateful functions. In Proceedings of
the 15th ACM International Conference on Distributed and Event-based Systems.
ACM, Virtual Event Italy, 31–42.

[11] S. Debois, T.T. Hildebrandt, and T. Slaats. 2018. Replication, refinement & reacha-
bility: complexity in dynamic condition-response graphs. Acta Informatica 55
(2018), 489–520.

[12] Radoslav Gatev. 2021. State Management. In Introducing Distributed Application
Runtime (Dapr). Apress, Berkeley, CA, 145–158.

[13] Thomas T. Hildebrandt, Håkon Normann, Morten Marquard, Søren Debois, and
Tijs Slaats. 2022. Decision Modelling in Timed Dynamic Condition Response
Graphs with Data. In Business Process Management Workshops, Andrea Marrella
and Barbara Weber (Eds.). Springer International Publishing, Cham, 362–374.

[14] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty Asynchro-
nous Session Types. J. ACM 63, 1 (March 2016), 1–67.

[15] Abhinav Jangda, Donald Pinckney, Yuriy Brun, and Arjun Guha. 2019. Formal
foundations of serverless computing. Proceedings of the ACM on Programming
Languages 3, OOPSLA (Oct. 2019), 1–26.

[16] Miika Kalske, Niko Mäkitalo, and Tommi Mikkonen. 2018. Challenges When
Moving fromMonolith to Microservice Architecture. In Current Trends inWeb En-
gineering, Irene Garrigós and Manuel Wimmer (Eds.). LNCS, Vol. 10544. Springer
International Publishing, Cham, 32–47.

[17] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. 1992. Providing
high availability using lazy replication. ACM Transactions on Computer Systems
10, 4 (Nov. 1992), 360–391.

[18] Rodrigo Laigner, Yongluan Zhou, and Marcos Antonio Vaz Salles. 2021. A dis-
tributed database system for event-based microservices. In Proceedings of the
15th ACM International Conference on Distributed and Event-based Systems. ACM,
Virtual Event Italy, 25–30.

[19] Rodrigo Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian Liu, and
Marcos Kalinowski. 2021. Datamanagement inmicroservices: state of the practice,
challenges, and research directions. Proceedings of the VLDB Endowment 14, 13
(Sept. 2021), 3348–3361.

[20] Konstantin Malyuga, Olga Perl, Alexandr Slapoguzov, and Ivan Perl. 2020. Fault
Tolerant Central Saga Orchestrator in RESTful Architecture. In 2020 26th Confer-
ence of Open Innovations Association (FRUCT). IEEE, Yaroslavl, Russia, 278–283.

[21] Davi Monteiro, Paulo Henrique M. Maia, Lincoln S. Rocha, and Nabor C. Men-
donça. 2020. Building orchestrated microservice systems using declarative busi-
ness processes. Service Oriented Computing and Applications 14, 4 (Dec. 2020),
243–268.

[22] Raja Mubashir Munaf, Jawwad Ahmed, Faraz Khakwani, and Tauseef Rana. 2019.
Microservices Architecture: Challenges and Proposed Conceptual Design. In
2019 International Conference on Communication Technologies (ComTech). IEEE,
Rawalpindi, Pakistan, 82–87.

[23] Meriem Ouederni. 2021. Compatibility checking for asynchronously communi-
cating software. Science of Computer Programming 205 (May 2021), 102569.

[24] Christian Posta. 2016. The Hardest Part About Microservices: Your
Data. https://blog.christianposta.com/microservices/the-hardest-part-about-
microservices-data/

[25] IBM Team. 2021. Microservices in the enterprise, 2021: Real benefits, worth the
challenges. Technical Report. International Business Machines Corporation.

[26] Martin Štefanko, Ondřej Chaloupka, and Bruno Rossi. 2019. The Saga Pattern in
a Reactive Microservices Environment:. In Proceedings of the 14th International
Conference on Software Technologies. SCITEPRESS - Science and Technology
Publications, Prague, Czech Republic, 483–490.

https://blog.christianposta.com/microservices/the-hardest-part-about-microservices-data/
https://blog.christianposta.com/microservices/the-hardest-part-about-microservices-data/

	Abstract
	1 Introduction
	2 Related Work
	3 Problematic Scenarios
	4 Visionary Architecture
	5 Event-Based Data-Centric Semantics
	6 Opportunities and Challenges
	7 Conclusion
	Acknowledgments
	References

