
Toward Reducing Cross-Shard Transaction Overhead in Sharded
Blockchains

Liuyang Ren
University of Waterloo

Waterloo, Canada
l27ren@uwaterloo.ca

Paul A. S. Ward
University of Waterloo

Waterloo, Canada
pasward@uwaterloo.ca

Bernard Wong
University of Waterloo

Waterloo, Canada
bernard@uwaterloo.ca

ABSTRACT
Sharding is a promising approach to high-performance blockchains
and has been extensively explored in academia recently. However,
sharding also introduces cross-shard transactions, which require
expensive inter-shard coordination to ensure state consistency.
Such transactions significantly limit the performance of sharded
blockchains.

To reduce cross-shard transactions in UTXO-based sharded bl-
ockchains, we propose Rooted Graph Placement, which identifies
the most appropriate shard for a transaction based on the interac-
tion between the transaction and historical transactions. In conjunc-
tion with the placement algorithm, we also devise two techniques to
lessen the system performance impact of the remaining cross-shard
transactions. One technique parallelizes dependent transaction veri-
ficationwith the atomic commit protocol, and the other consolidates
the atomic commit protocol. Combining all the three techniques,
we can improve the maximum system throughput by 118% when
compared with a state-of-the-art transaction placement algorithm.

CCS CONCEPTS
• Information systems→ Distributed database transactions; •
Computing methodologies → Vector / streaming algorithms;
• Mathematics of computing→ Graph algorithms.

KEYWORDS
blockchain, sharding, cross-shard transaction, transaction place-
ment, dependency graph

ACM Reference Format:
Liuyang Ren, Paul A. S. Ward, and Bernard Wong. 2022. Toward Reducing
Cross-Shard Transaction Overhead in Sharded Blockchains. In The 16th
ACM International Conference on Distributed and Event-based Systems (DEBS
’22), June 27-July 1, 2022, Copenhagen, Denmark. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3524860.3539641

1 INTRODUCTION
Conventional blockchains suffer from low performance due to
their need for every node in the chain to verify and execute all
transactions. To improve performance, various designs have been

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DEBS ’22, June 27-July 1, 2022, Copenhagen, Denmark
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9308-9/22/06. . . $15.00
https://doi.org/10.1145/3524860.3539641

proposed—e.g., shortening block intervals [4], incorporating off-
chain blocks [20] [21], allowing one miner to consecutively propose
multiple blocks [10], sharding [22] [18] [34] [5], journaling aggre-
gated transaction effects to blockchains [6] [28], etc. Among these
techniques, sharding is a very promising approach that has been
extensively explored in academia and adopted by Ethereum 2.0
[8]. The high-level idea of sharding is to partition a system into
independent shards and distribute workloads among shards for
parallel processing, so that the system performance scales with the
number of nodes.

However, because each shard usually stores a disjoint subset
of the system state [18] [34] [5] [1] [15], transactions modifying
more than one subset inevitably incur cross-shard communication.
Moreover, since blockchains operate in trustless environments, ex-
pensive digital signatures must be employed to prove cross-shard
message authenticity. The overhead makes cross-shard transac-
tions consume more network and CPU resources than single-shard
transactions. Nonetheless, as the most common transaction place-
ment algorithm [22][18][34][5], hashing placement creates a huge
number of cross-shard transactions, e.g., 95% of transactions are
cross-shard in a 16-shard system.With so many cross-shard transac-
tions, sharded blockchains can hardly approach their full potential.

Previous work on reducing cross-shard transactions either re-
lies on additional trust points or applies only to account-balance
blockchains. Thus this work proposes a novel transaction place-
ment algorithm, namely Rooted Graph Placement (RGP), that is
fully decentralized and applies to UTXO-based blockchains. We
observed that transactions with (cascading) dependencies between
them are more likely to be referenced together by future trans-
actions than unrelated transactions. This is because transaction
dependencies reflect the connections between the users who ini-
tiate the transactions. Users with connections are more likely to
collaborate in the future than those without connections, especially
considering that a user may control multiple identifies/addresses in
a blockchain system and transfer cryptocurrencies between them.
Based on this observation, RGP tends to place a transaction to the
shard that includes most of the ancestor transactions so that future
transactions referencing this transaction will have a better chance
of executing within a single shard.

RGP can reduce cross-shard transactions but not eliminate them,
so we also devise two techniques for efficiently processing the re-
maining cross-shard transactions. The first technique is dependent
transaction pre-verification, which parallelizes the atomic commit
protocol of cross-shard transactions with the signature verification
of their dependent transactions. This design shortens the execution
latency of the dependent transactions. The second technique uti-
lizes the fact that RGP places most cross-shard transactions to one
of their input shards. For such shards, the request for lock input

https://doi.org/10.1145/3524860.3539641
https://doi.org/10.1145/3524860.3539641

DEBS ’22, June 27-July 1, 2022, Copenhagen, Denmark Liuyang Ren, Paul A. S. Ward, and Bernard Wong

UTXO(s) and the request for generating output UTXO(s) can be
merged into one message, which reduces signatures and consensus
rounds involved in cross-shard transaction processing.

2 BACKGROUND
2.1 Unspent Transaction Output (UTXO) Model
Unlike conventional banking systems, cryptocurrencies like Bitcoin
use a UTXO model to express their system states instead of the
account-balance model. Accordingly, a transaction spends input
UTXOs and generates output UTXOs. Figure 1 demonstrates the
transaction execution in Bitcoin. Bob sends 1.5 BTC to Alice by
creating a transaction that spends the 2-BTC UTXO, which belongs
to Bob, and generates a 1.5-BTCUTXO for Alice as well as a 0.5-BTC
UTXO for Bob. Once the transaction is executed, the 2-BTC UTXO
(i.e., UTXO B in Figure 1) does not exist anymore. Every transaction
consumes some input UTXO(s), except for coinbase transactions,
which spend nothing and credit output UTXOs to miners.

old system state new system state

UTXO A: value = 1 BTC
 owner = Alice
UTXO B: value = 2 BTC
 owner = Bob

UTXO A: value = 1 BTC
 owner = Alice
UTXO C: value = 0.5 BTC
 owner = Bob
UTXO D: value = 1.5 BTC
 owner = Alice

Transaction
Input:
UTXO B

Output:
UTXO C (0.5 BTC, Bob)
UTXO D (1.5 BTC, Alice)

Figure 1: Transaction execution

Given a transaction, the transaction placement problem in a
UTXO-based system means finding a shard to process the transac-
tion and store the output UTXOs. This shard is called the output
shard of this transaction. Similarly, a shard storing at least one
input UTXO of this transaction is called an input shard. All output
UTXOs of a transaction should be stored in the same shard because
they are likely to be consumed together in the future. Therefore,
every transaction has only one output shard.

2.2 Blockchain Sharding Protocols
In this section, we first describe the sharding protocol OmniLedger
[18] and then briefly introduce other sharding protocols. OmniLedger
is described in detail because it will be used for evaluating the tech-
niques proposed in this paper. This is consistent with a related
work called OptChainV2, which also employs OmniLedger in its
evaluation.

OmniLedger partitions peers in the blockchain network into con-
currently operating shards that maintain their respective ledgers
and states. Shard members are selected based on an unbiased ran-
dom number and periodically reconfigured so that slow-adaptive
attackers cannot corrupt the blockchain network by attacking a

shard. Within a shard, peers run the Practical Byzantine Fault Tol-
erance (PBFT) protocol [3] to agree on the order of transactions.
To ensure state consistency between shards, cross-shard transac-
tions rely on an atomic commit protocol to be either unanimously
committed or unanimously aborted. The problem of guaranteeing
transaction atomicity dates back to the late 1970s [19][12]. Among
various protocols, the two-phase commit (2PC) protocol [19] is
most widely used [13][31]. OmniLedger adopts the “two-phase”
concept and invents Atomix for sharded blockchains. In trustless
environments, it is challenging to find an atomic commit proto-
col coordinator, whose misbehavior may lead to forever-locked
UTXOs. OmniLedger utilizes clients as the coordinators of their
own transactions so that coordinators are incentivized to conform
to the protocol.

The basic idea of Atomix is shown in Figure 2. A client requests
the input shards to lock the input UTXOs (i.e., mark the UTXOs as
spent), and the input shards respond with signed lock results. If all
input shards reply with positive lock results, the client then sends
the output shard a COMMIT request along with signatures from the
input shards as proof of successful locking. Upon receiving the
COMMIT request, the output shard adds the output UTXO(s) to its
system state, provided that all signatures of the input shards are
valid. If any input shard fails to lock an input UTXO, the client
requests the other input shards to unlock their respective input
UTXOs with the signed response from the fail shard as proof of
unsuccessful execution.

Other blockchain sharding protocols include Elastico [22], Rapid-
Chain [34], AHL [5], SharPer[1], etc. Elastico, AHL, and SharPer
also employ PBFT as their intra-shard consensus protocol, whereas
RapidChain uses a variant of a synchronous consensus protocol [29]
to tolerate the same number of faulty peers with a smaller shard size.
In terms of atomic commit protocols, RapidChain processes a cross-
shard transaction by splitting it into multiple sub-transactions, each
of which spends UTXOs that reside in one shard (i.e., every sub-
transaction has only one input shard). AHL incorporates 2PC and
leverages an entire Byzantine fault-tolerant committee as the co-
ordinator. SharPer[1] claims that AHL cannot process cross-shard
transactions in parallel due to the single coordinator committee,
so it utilizes individual peers as coordinators instead. Specifically,
every node serves as its own coordinator by exchanging messages
with the other nodes in involved shards and deriving the com-
mit decision locally. Such decentralized approaches have also been
explored by Cerberus [14] (a series of cross-shard transaction pro-
cessing protocols) and Byshard [15] (a framework for the study of
sharded resilient systems). However, decentralized coordination
usually incurs high message complexity. Elastico is fundamentally
different from other sharding protocols in that it does not partition
the system state. As a result, there are no cross-shard transactions
in Elastico. Table 1 summarizes the above sharding protocols.

3 RELATEDWORK
The difference between UTXO-based blockchains and account-
balance blockchains necessitates different approaches to reducing
cross-shard transactions, i.e., transaction placement and account
placement. Previous works handling both types of blockchains are
reviewed in this section.

Toward Reducing Cross-Shard Transaction Overhead in Sharded Blockchains DEBS ’22, June 27-July 1, 2022, Copenhagen, Denmark

Cross-shard
transaction tx
Input:
UTXO1 (Shard1)
UTXO2 (Shard2)

Output:
UTXO3 (Shard3)

(a) A cross-shard transaction

Client

Shard1 Shard2 Shard3

LOCK <tx>

LO
C

K
 <

tx
>

Client

Shard1 Shard2 Shard3

LOCK-O
K

<sig
s 1>

LO
C

K
-O

K
<s

ig
s 2

>

Client

Shard1 Shard2 Shard3

COMMIT

<tx, sigs1 , sigs2 >

UTXO1 UTXO2 UTXO1 UTXO2 UTXO3

(b) Atomix (commit scenario)

Figure 2: An example of OmniLedger’s Atomix protocol

Table 1: Blockchain Sharding Protocols

Protocol Intra-shard Consensus Atomic commit protocol Coordinator Transaction Placement

Elastico PBFT N/A N/A Hashing placement
OmniLedger PBFT Atomix Client Hashing placement
RapidChain Synchronous BFT Transaction splitting PBFT leader of output shard Hashing placement
AHL PBFT 2PC Dedicated BFT committee Hashing placement
SharPera PBFT decentralized protocol decentralized An involved shard
a SharPer supports networks consisting of either crash-only or Byzantine nodes. Here we consider SharPer only in Byzantine-faulty networks, since all
other sharding protocols operate under such environments.

3.1 Transaction placement in UTXO-based
blockchains

The hashing placement algorithm places transactions to shards
based on the prefix matching of transaction IDs and shard IDs. Be-
cause transaction IDs are essentially hash values (e.g., SHA256 val-
ues in Bitcoin [24]), which are uniformly distributed over the output
range of the corresponding hash function [33], hashing placement
is equivalent to placing transactions randomly. In contrast, our
placement algorithm RGP considers transaction dependencies.

OptChainV21 [26] is a client-side transaction placement algo-
rithm for UTXO-based sharded blockchains. To reduce cross-shard
transactions, OptChainV2 builds a graph with transactions as ver-
tices and transaction dependencies as edges. OptChainV2 associates
every transaction with a fitness-score array, each element of which
reflects the fitness between the transaction and the corresponding
shard. Based on PageRank [27], OptChainV2 computes a child trans-
action’s fitness-score array as an element-wise weighted sum of its
parents’ fitness-score arrays, as shown in Figure 3. To account for
load balance, OptChainV2 divides fitness scores by the correspond-
ing transaction partition sizes and requires clients to frequently
sample shards for communication latency and transaction queue
length. There are two main differences between OptChainV2 and
our RGP algorithm. First, OptChainV2 utilizes the information of all
ancestor transactions as fitness scores are calculated in a top-down
approach. By contrast, RGP only uses the recent ancestors but can
achieve the same low cross-shard transaction numbers as we will
see in Section 4.4. Second, RGP does not require shard sampling
because peers are byzantine faulty and may not respond honestly.

1The difference between OptChainV2 and OptChain[25] has been given in our previous
work [30].

b

c d

fe

[fa1, fa2]

x

[fb1, fb2]

[fc1, fc2] [fd1, fd2]

[fe1, fe2]

[fx1 = wd fd1 + wf ff1,
fx2 = wd fd2 + wf ff2]

a

[ff1, ff2]

(a) Transaction graph

Transaction f

output
UTXO4
UTXO5
UTXO6

input
UTXO1
UTXO2

Transaction d

output
UTXO2
UTXO3

input
UTXO0

Transaction x

output
UTXO7

input
UTXO3
UTXO4
UTXO5

wd = 1/2

wf = 2/3

(b) Weights of parents

Figure 3: Principle of OptChainV2. 𝑓𝑖 𝑗 is the fitness score
between transaction 𝑖 and the 𝑗-th shard. The fitness-score
array of transaction 𝑥 is an element-wise weighted sum of
the fitness-score arrays of 𝑥 ’s parents (i.e., transaction 𝑑 and
𝑓). The weights (e.g.,𝑤𝑑) depend on what fraction of input
UTXOs are from the parent transactions.

3.2 Account placement in account-balance
blockchains

Hashing placement also applies to account partitioning and creates
many cross-shard transactions [9][17]. Generally, cross-shard trans-
actions are reduced by placing accounts that frequently transact
with each other in the same shard [11][23]. To identify such ac-
counts, Fynn et al. [11]model Ethereum transactions as a graphwith
accounts as vertices and transactions as edges. Using this graph,
they evaluate multiple partitioning algorithms, such as METIS [16]
(a well-regarded offline graph partitioning algorithm) and its vari-
ants. Since account behaviour may change over time, some of these
algorithms re-partition the graph periodically. Fynn et al. concludes
that METIS produces the fewest cross-shard transactions but the

DEBS ’22, June 27-July 1, 2022, Copenhagen, Denmark Liuyang Ren, Paul A. S. Ward, and Bernard Wong

worst load balance, whereas hashing placement is at the other ex-
treme. Consequently, neither METIS nor hashing placement helps
the system achieve the best performance. This conclusion agrees
with the OptChainV2 paper, which employs METIS and hashing
placement for comparison.

4 ROOTED GRAPH PLACEMENT
In this section, we describe our transaction placement algorithm—
Rooted Graph Placement (RGP), which reduces cross-shard transac-
tions in UTXO-based blockchains. As we observed that transactions
with dependencies between each other are more likely to have their
output UTXOs spent in the same future transaction, RGP attempts
to reduce cross-shard transactions by placing a transaction to the
shard with most of its ancestor transactions. Besides cross-shard
transaction reduction, RGP also considers load balancing. Because
sharding protocols usually partition peers based on unbiased ran-
dom numbers and reconfigure shard membership periodically for
security purposes[18][34][5], this work assumes computational re-
sources are evenly distributed among shards. Thus, RGP attempts
to assign an equal number of transactions to all shards.

4.1 Cross-shard Transaction Reduction
As RGP aims at placing a transaction to the shard with most an-
cestor transactions, it models these transactions and dependencies
between them using a rooted directed acyclic graph (DAG). Given a
new transaction, RGP builds a graph 𝐺 = (𝑉 , 𝐸) rooted at the new
transaction. A transaction𝑢 ∈ 𝑉 only if𝑢 is an ancestor transaction
of the new transaction (including the new transaction itself). A
directed edge (𝑣,𝑢) ∈ 𝐸 if 𝑢 ∈ 𝑉 , 𝑣 ∈ 𝑉 , and 𝑣 consumes the output
UTXO(s) of𝑢. The graph is built starting from the root because child
transaction’s input UTXO IDs carry information about parent trans-
action IDs. Finding all ancestor transactions is expensive, so RGP
only considers ancestors within a certain distance from the root.
We refer to RGP that traces back 𝑘 levels of ancestor transactions as
RGP𝑘 . Figure 4a illustrates an example of RGP2, where transactions
that are part of the rooted graph are underlined. Transaction 𝑎 is
not part of the rooted graph because it is 3 hops away from the root
𝑥 while RGP2 only considers ancestors within two hops. Therefore,
the rooted graph is essentially a subgraph of the global transaction
dependency graph. An ancestor transaction is called a level- 𝑗 an-
cestor if the shortest path between the root vertex and the ancestor
vertex consists of 𝑗 edges, as shown in Figure 4b. With the rooted
graph, RGP counts the number of ancestor transactions in each
shard and calculates cost scores based on the counting results. A
shard’s cost score reflects the cost-effectiveness of placing the new
transaction to the shard. Generally, RGP attempts to place a new
transaction to the shard that has processed most of its ancestors,
but we have two special considerations.

When calculating cost scores, RGP distinguishes between totally
spent ancestors and partially spent ancestors. A partially spent an-
cestor will have at least one output UTXO that remains unspent
after the new transaction is executed, whereas a totally spent ances-
tor has no output UTXOs left unspent. Figure 5 demonstrate why
totally spent ancestors should be given less weight than partially
spent ancestors. Suppose transaction 𝑥 is a new transaction to be

b

c d

fe

x

Shard1 Shard2a

(a) Ancestors in two shards

lev
el-

1
an

ces
tor

s

lev
el-

2
an

ces
tor

s

b

c d

f

x

(b) Ancestor levels

Figure 4: An example of RGP2. Underlined transactions are
vertices of the rooted graph.

placed, and its two ancestors (i.e., transaction 𝑑 and 𝑓) are in dif-
ferent shards. Transaction 𝑑 is totally spent since𝑈𝑇𝑋𝑂2 has been
spent by transaction 𝑓 and𝑈𝑇𝑋𝑂3 will be spent by 𝑥 . On the other
hand, transaction 𝑓 is partially spent since no transaction consumes
𝑈𝑇𝑋𝑂5. As a result, a future transaction𝑦 may consume the output
UTXOs of both transaction 𝑓 and transaction 𝑥 . To prevent such fu-
ture transactions from modifying two shards, transaction 𝑥 should
be placed to the same shard as 𝑓 . Therefore, we use a coefficient
𝛼 ∈ (0, 1) to give totally spent ancestors less weight than partially
spent ancestors.

Transaction f

output
UTXO4
UTXO5

input
UTXO1
UTXO2

Transaction d

output
UTXO2
UTXO3

input
UTXO0

Transaction x

output
UTXO6

input
UTXO3
UTXO4

Transaction y

output
...

input
UTXO5
UTXO6

Figure 5: Transaction 𝑓 is a partially spent ancestor of trans-
action 𝑥 , and transaction 𝑑 is a totally spent ancestor of 𝑥 .

RGP also takes level breadths (i.e., the number of ancestors in
each level) into consideration so that a counting result is not biased
by the level with the most transactions. Suppose a new transaction
have one level-1 ancestor (in 𝑠ℎ𝑎𝑟𝑑1) and four level-2 ancestors (one
in 𝑠ℎ𝑎𝑟𝑑1 and three in 𝑠ℎ𝑎𝑟𝑑2). Without considering level breadths,
RGP would tend to assign the new transaction to 𝑠ℎ𝑎𝑟𝑑2, since
𝑠ℎ𝑎𝑟𝑑2 holds one more ancestor than 𝑠ℎ𝑎𝑟𝑑1. In other words, the
cost scores would be biased by level-2 ancestors because they out-
number the level-1 ancestor by 4x. However, the level-1 ancestor
is important since the new transaction would be single-shard if
placed to its shard. Thus, RGP divides ancestor counts by the cor-
responding level breadths to ensure the equal significance of each
level, hence the cost score definition below:

𝑆𝑐𝑜𝑠𝑡 (𝑖) =
𝑘∑︁
𝑗=1

𝑝𝑖 𝑗 + 𝛼𝑡𝑖 𝑗∑𝑛𝑠
𝑚=1 (𝑝𝑚𝑗 + 𝑡𝑚𝑗)

(1)

Toward Reducing Cross-Shard Transaction Overhead in Sharded Blockchains DEBS ’22, June 27-July 1, 2022, Copenhagen, Denmark

where 𝑆𝑐𝑜𝑠𝑡 (𝑖) is the cost score of shard 𝑖 (1 ≤ 𝑖 ≤ 𝑛𝑠); 𝑛𝑠 is the
number of shards; 𝑘 is the number of ancestor levels in the graph;
𝑝𝑖 𝑗 (or 𝑝𝑚𝑗) is the number of partially spent level- 𝑗 ancestors that
have been placed to shard 𝑖 (or shard𝑚); 𝑡𝑖 𝑗 (or 𝑡𝑚𝑗) is the number
of totally spent level- 𝑗 ancestors that have been placed to shard
𝑖 (or shard𝑚); 𝛼 is the totally spent ancestor weight (0 < 𝛼 < 1).
The denominator

∑𝑛𝑠
𝑚=1 (𝑝𝑚𝑗 + 𝑡𝑚𝑗) is the sum of level- 𝑗 ancestors

across shards, which represents the breadth of the 𝑗-th level in the
rooted graph. The cost score of a shard is in the range of [0, 𝑘].
A high cost score means placing the transaction to the shard is
likely to reduce future cross-shard transactions (including the one
currently being placed).

4.2 Load Balancing
When placing a transaction, RGP also calculates a load score for
each shard to account for load balancing. A high load score means
that the shard is experiencing a relatively light workload, so the
transaction will experience a relatively low queuing delay if placed
to the shard. To avoid ambiguity, we use partition 𝑖 (denoted by 𝑃𝑖)
to refer to the set of transactions that have been placed to shard 𝑖 .
Obviously, small partitions should receive high load scores. Also,
we want to limit the maximum partition size difference so that
load imbalance is bounded. Therefore, we model the load score of a
shard as a piecewise function:

𝑆𝑙𝑜𝑎𝑑 (𝑖) =

0 if |𝑃𝑖 | ≥ |𝑃𝑚𝑖𝑛 | + 𝜃
1 − 𝛾

|𝑃𝑖 |−|𝑃𝑚𝑖𝑛 |
|𝑃𝑚𝑎𝑥 |−|𝑃𝑚𝑖𝑛 | if |𝑃𝑚𝑖𝑛 | + 𝜃 > |𝑃𝑖 | > |𝑃𝑚𝑖𝑛 |

1 if |𝑃𝑖 | = |𝑃𝑚𝑖𝑛 |
(2)

where 𝑆𝑙𝑜𝑎𝑑 (𝑖) is the load score of shard 𝑖 (1 ≤ 𝑖 ≤ 𝑛𝑠); |𝑃𝑖 | is
the size of partition 𝑖; |𝑃𝑚𝑖𝑛 | and |𝑃𝑚𝑎𝑥 | are sizes of the smallest
partition and largest partition, respectively; |𝑃𝑚𝑖𝑛 | +𝜃 is the bound-
ary partition size that distinguishes large partitions from medium
partitions; 𝛾 ∈ (0, 1] is a coefficient that determines how heavily a
medium partition is penalized. 𝑆𝑙𝑜𝑎𝑑 (𝑖) gently penalizes medium
partitions based on their sizes and aggressively penalizes large
partitions. Note that in the second line of Equation 2, the denom-
inator |𝑃𝑚𝑎𝑥 | − |𝑃𝑚𝑖𝑛 | is implicitly guaranteed to be greater than
zero because of the condition |𝑃𝑖 | > |𝑃𝑚𝑖𝑛 |. For medium partitions,
𝑆𝑙𝑜𝑎𝑑 (𝑖) is in range [1 − 𝛾 , 1).

To take into account both cross-shard transaction reduction and
load balancing, the final decision should be based on both the cost
score and the load score. While adding up the two scores seems to
be a reasonable choice, it cannot limit load imbalance because large
partitions with non-zero ancestors could have a higher score sum
than small partitions without ancestors. Thus, to have bounded
load imbalance, we design the overall score as the multiplication of
the two scores:

𝑆𝑖 = 𝑆𝑐𝑜𝑠𝑡 (𝑖) · 𝑆𝑙𝑜𝑎𝑑 (𝑖) (3)

where 𝑆𝑖 is the overall score of shard 𝑖 . As 𝑆𝑐𝑜𝑠𝑡 (𝑖) is in range [0, 𝑘],
and 𝑆𝑙𝑜𝑎𝑑 (𝑖) is in range [0, 1], 𝑆𝑖 must be in range [0, 𝑘]. The overall
scores of large partitions are always zero because of Equation 2. If
𝑆𝑖 = 0 for all shards, which occurs when the new transaction only
has ancestors in large partitions, RGP places the new transaction to
the smallest partition. In this way, RGP never places transactions
to large partitions, so the maximum partition size difference is
bounded by 𝜃 . Algorithm 1 shows the complete RGP algorithm.

Algorithm 1: Rooted Graph Placement
Input: a new transaction 𝑥 , the number of ancestor levels 𝑘 ,

the number of shards 𝑛𝑠 , transactions reachable from
𝑥 within 𝑘 hops, totally spent ancestor weight 𝛼 ,
partition sizes |𝑃1 |, |𝑃2 |, . . . , |𝑃𝑛𝑠 |, medium partition
penalty coefficient 𝛾 , imbalance upper bound 𝜃

Output: 𝑥 ’s output shard ID 𝑠𝑜𝑢𝑡 (𝑥)
1 if 𝑥 is a coinbase transaction then
2 𝑠𝑜𝑢𝑡 (𝑥) = hash(𝑥) mod 𝑛𝑠

3 else
/* Build the rooted graph */

4 starting from transaction 𝑥 , using BFS to build a rooted
graph with 𝑘 levels of ancestors.

5 for 𝑖 ∈ [1, 𝑛𝑠] do
/* Compute the cost score of shard 𝑖 */

6 𝑆𝑐𝑜𝑠𝑡 (𝑖) =
∑𝑘

𝑗=1
𝑝𝑖 𝑗+𝛼𝑡𝑖 𝑗∑𝑛𝑠

𝑚=1 (𝑝𝑚𝑗+𝑡𝑚𝑗)
/* Compute the load score of shard 𝑖 */

7 if |𝑃𝑖 | ≥ |𝑃𝑚𝑖𝑛 | + 𝜃 then
8 𝑆𝑙𝑜𝑎𝑑 (𝑖) = 0
9 else if |𝑃𝑖 | > |𝑃𝑚𝑖𝑛 | then
10 𝑆𝑙𝑜𝑎𝑑 (𝑖) = 1 − 𝛾

|𝑃𝑖 |− |𝑃𝑚𝑖𝑛 |
|𝑃𝑚𝑎𝑥 |− |𝑃𝑚𝑖𝑛 |

11 else
12 𝑆𝑙𝑜𝑎𝑑 (𝑖) = 1

/* Compute the overall score of shard 𝑖 */

13 𝑆𝑖 = 𝑆𝑐𝑜𝑠𝑡 (𝑖) · 𝑆𝑙𝑜𝑎𝑑 (𝑖)
/* Place 𝑥 into the shard with the highest overall score */

14 if max(𝑆𝑖) > 0 then
15 𝑠𝑜𝑢𝑡 (𝑥) = argmax𝑖 (𝑆𝑖)
16 else
17 𝑠𝑜𝑢𝑡 (𝑥) = the ID of the smallest partition

4.3 Impacts of Parameters
In this section, we demonstrate how the four parameters of RGP
affect its transaction partitioning quality (i.e., the cross-shard trans-
action number and load balancing) and give the recommended
parameter values. Generally, due to the intrinsic tradeoff between
the two metrics, varying a parameter usually improves one metric
at the cost of worsening the other. The recommended parameter
values are derived using the first 200k Bitcoin blocks. However,
we will see these parameters are pretty robust and transferable to
different workloads in Section 4.4.

Figure 6a demonstrates that RGP1 (i.e., RGP that traces back one
level of ancestor transactions) can lower the cross-shard transac-
tion percentage to 25%, in contrast to 93% with hashing placement.
RGP2 further reduces cross-shard transactions to 17%. RGP2 is able
to produce fewer cross-shard transactions than RGP1 because it
feeds the RGP algorithm with more information about the global
dependency graph. This is consistent with what has been observed
in graph partitioning [32]. Adding more levels to the rooted graph
can yield even fewer cross-shard transactions, but the improvement
is marginal. In Figure 6b, the lowest cross-shard transaction per-
centage occurs when 𝛼 ∈ [0.8, 0.9]. This is because when 𝛼 = 1 (i.e.,
totally spent ancestors are given the same weight as partially spent

DEBS ’22, June 27-July 1, 2022, Copenhagen, Denmark Liuyang Ren, Paul A. S. Ward, and Bernard Wong

ancestors), RGP ignores the fact that a partially spent ancestor and
the new transaction may be referenced in the same future trans-
action. Nevertheless, low 𝛼 values make RGP undervalue totally
spent ancestors and thus increase cross-shard transactions as well.

1 2 3 4
Levels of ancestor txns k

10

15

20

25

30

%
 o

f c
ro

ss
-s

ha
rd

 tx
ns

0

2

4

6

|P
m
ax
| -

 |P
m
in
|

1e4

Cross-shard txn
Load imbalance

(a) Vary𝑘 (𝛼 = 0.9, 𝛾 = 0.2, 𝜃 = 50k)

0.25 0.50 0.75 1.00
Totally spent ancestor weight α

10

15

20

25

30

%
 o

f c
ro

ss
-s

ha
rd

 tx
ns

0

2

4

6

|P
m
ax
| -

 |P
m
in
|

1e4

Cross-shard txn
Load imbalance

(b) Vary 𝛼 (𝑘 = 2, 𝛾 = 0.2, 𝜃 = 50k)

0.0 0.2 0.4
Medium partition penalty coefficient γ

10

15

20

25

30

%
 o

f c
ro

ss
-s

ha
rd

 tx
ns

0

2

4

6

|P
m
ax
| -

 |P
m
in
|

1e4

Cross-shard txn
Load imbalance

(c) Vary 𝛾 (𝑘 = 2, 𝛼 = 0.9, 𝜃 = 50k)

0 200000
Imbalance upper bound θ

10

15

20

25

30

%
 o

f c
ro

ss
-s

ha
rd

 tx
ns

0

1

2

3

|P
m
ax
| -

 |P
m
in
|

1e5

Cross-shard txn
Load imbalance

(d) Vary 𝜃 (𝑘 = 2, 𝛼 = 0.9, 𝛾 = 0.2)

Figure 6: Influence of RGP parameters (16 shards)

Figure 6c illustrates the impact of 𝛾 . As expected, with high 𝛾

values, medium partitions are penalized heavily, hence better load
balancing but more cross-shard transactions. Surprisingly, 𝛾 = 0
also results in a relatively high cross-shard transaction percentage.
We believe this is because, when 𝛾 = 0, load scores equal either zero
or one according to Equation 2. As a result, an overall score defined
in Equation 3 equals either the cost score or zero instead of a compre-
hensive assessment based on both ancestor transaction distribution
and shard loads. Finally, as 𝜃 controls the maximum partition size
difference, it is natural that load imbalance grows linearly with 𝜃

and cross-shard transactions drop as 𝜃 grows. The elbow of the
curve in Figure 6d suggests that 𝜃 = 50𝑘 is a reasonable choice since
further increasing 𝜃 does not reduce cross-shard transactions much
but cause high imbalance. Per the above analysis, the recommended
parameter values are as follows: 𝑘 = 2, 𝛼 = 0.9, 𝛾 = 0.2, 𝜃 = 50𝑘 .
These values are used in the rest of this paper.

4.4 Partitioning Quality Comparison
To show that the parameter value combination identified in the
last section generalizes well with other workloads, we employ four
transaction sets of similar sizes as detailed in Table 2. The transac-
tion partitioning quality of RGP2 is compared with that of hashing
placement andOptChainV2-T2S, which is OptchainV2without shard
communication latency and transaction queue length sampling2.
OptChainV2-T2S is used instead of OptChainV2 in this section
because it can be evaluated analytically without deploying shards,
which is also true for hashing placement and RGP2. This is particu-
larly useful when comparing the algorithms under a large number
2The name OptChainV2-T2S comes from the OptChainV2 paper, where the method is
referred to as T2S-based.

of shards, e.g., 128 shards. OptChainV2-T2S produces slightly fewer
cross-shard transactions than OptChainV2 as it misses the sampling
feature for fine-grained load balancing. If RGP2 can achieve a simi-
lar number of cross-shard transactions as OptChainV2-T2S, it will
be at least as effective as OptChainV2 in terms of cross-shard trans-
action reduction. We will compare RGP2 with sampling-enabled
OptChainV2 in Section 6.

Table 2: Four Transaction Datasets

Dataset Bitcoin block heights Transaction counta

𝐷1 [0, 200k) 7,316,308
𝐷2 [200k, 227k) 7,371,053
𝐷3 [227k, 252k) 7,316,337
𝐷4 [252k, 275k) 7,238,332

aCoinbase transactions are excluded.

4 16 128

Number of shards

0

20

40

60

80

100

%
 o

f
cr

o
ss

-s
h

ar
d

tr
an

sa
ct

io
n

s

Hashing

OptChainV2-T2S

RGP2

(a) Dataset 𝐷1

4 16 128

Number of shards

0

20

40

60

80

100

%
 o

f
cr

o
ss

-s
h

ar
d

tr
an

sa
ct

io
n

s

Hashing

OptChainV2-T2S

RGP2

(b) Dataset 𝐷2

4 16 128

Number of shards

0

20

40

60

80

100

%
 o

f
cr

o
ss

-s
h

ar
d

tr
an

sa
ct

io
n

s

Hashing

OptChainV2-T2S

RGP2

(c) Dataset 𝐷3

4 16 128

Number of shards

0

20

40

60

80

100

%
 o

f
cr

o
ss

-s
h

ar
d

tr
an

sa
ct

io
n

s

Hashing

OptChainV2-T2S

RGP2

(d) Dataset 𝐷4

Figure 7: Cross-shard transactions

Figure 7 compares the cross-shard transaction percentage of
the three placement algorithms. For all datasets, regardless of the
number of shards, RGP2 and OptChainV2-T2S produce similar
numbers of cross-shard transactions, and the number is significantly
less than that of hashing placement. These results confirm that,
despite considering only two levels of ancestors, RGP2 is able to
reduce cross-shard transactions as effectively as OptChainV2-T2S.
To learn how shard loads vary over time, we analyze the dynamic
shard loads in a 4-shard environment, as illustrated in Figure 8.
Unsurprisingly, hashing placement balances loads extremely well
with every shard constantly receiving about 25% of the transactions.
In Figure 8a, the three small spikes at block height 200k, 227k, and
251k correspond to the start heights of datasets 𝐷2 ∼ 𝐷4, and the
slight fluctuations at the beginning are due to small block sizes.

Another observation is that Figure 8b and Figure 8c exhibit a
common pattern: all curves are quite flat in blocks [0, 50k) and
[125k, 175k), but fluctuate a lot in the range of [70k, 120k) and

Toward Reducing Cross-Shard Transaction Overhead in Sharded Blockchains DEBS ’22, June 27-July 1, 2022, Copenhagen, Denmark

0 50000 100000 150000 200000 250000
Block height

0

20

40

60

80

100

Lo
ad

 (%
 tx

ns
) Shard1

Shard2

Shard3
Shard4

(a) Hashing placement

0 50000 100000 150000 200000 250000
Block height

0

20

40

60

80

100

Lo
ad

 (%
 tx

ns
) Shard1

Shard2

Shard3
Shard4

(b) OptChainV2-T2S

0 50000 100000 150000 200000 250000
Block height

0

20

40

60

80

100

Lo
ad

 (%
 tx

ns
) Shard1

Shard2

Shard3
Shard4

(c) RGP2

Figure 8: Dynamic shard loads (4 shards)

[180, 250k). This pattern relates to transactions consuming the out-
put UTXOs of their immediate predecessors. For example, starting
from the 326th transaction in Bitcoin block 177253, each of the
267 subsequent transactions spends the UTXOs produced by its
preceding transaction[2]. When faced with such transactions, both
OptChainV2-T2S and RGP2 tend to place them to the same shard as
their predecessors. Consequently, a sequence of such transactions
will cause a shard to temporarily receive more transactions than
other shards. Table 3 shows that such transactions account for a
relatively high percentage whenever the shard load curves fluctu-
ate drastically. However, the load balancing mechanisms prevent a
shard from being overloaded for a long time, so shards take turns
to receive the most transactions.

Table 3: Transactions Depending on Their Predecessors

Bitcoin block height Transactions consuming UTXOs
produced by their predecessors

[0, 50k) 0.1%
[70k, 120k) 18.6%
[125k, 175k) 6.1%
[180k, 250k) 21.3%
[253k, 275k) 14.6%

5 EFFICIENT CROSS-SHARD TRANSACTION
PROCESSING

Although RGP reduces the number of cross-shard transactions,
it cannot eliminate them. In this section, we propose two tech-
niques to lessen the impact of cross-shard transactions on system
performance. The first technique expedites dependent transaction
processing, while the second technique reduces the communication
and computational overhead involved in cross-shard transaction
processing. Both techniques require modifications to the atomic
commit protocol. Since neither technique deals with the intra-shard
consensus protocol, we abstract away the consensus process as if
client requests are ordered as soon as they reach the destination
shards. The techniques focus on how transactions are processed
(i.e., verified and executed) once an order has been established.

5.1 Dependent Transaction Pre-verification
Cross-shard transactions usually experience long execution latency
due to atomic commit protocols such as Atomix in Figure 2. This

inevitably delays the processing of their dependent transactions
since transactions must be executed in a dependency-respectful
order. Figure 9a illustrates the timeline of processing one cross-
shard transaction (i.e., 𝑡𝑥1) and two single-shard transactions that
depend on it (i.e., 𝑡𝑥2 and 𝑡𝑥3). Suppose the client runs RGP2 and
determines that 𝑡𝑥2 and 𝑡𝑥3 should be placed to the output shard of
𝑡𝑥1, which is 𝑆ℎ𝑎𝑟𝑑2. Although the client sends 𝑡𝑥2 and 𝑡𝑥3 soon
after sending 𝑡𝑥1, 𝑆ℎ𝑎𝑟𝑑2 delays processing the two dependent
transactions until 𝑡𝑥1 is executed to respect dependencies. In the
above process, two steps are notably expensive—the locking phase
and the verification of 𝑡𝑥2 and 𝑡𝑥3—because both steps involve the
verification of signatures from input UTXO owners. Nonetheless,
the two steps do not have to be carried out in a serialized manner.

In a UTXO-based blockchain, a peer mainly checks for three
conditions when verifying a transaction: 1) the input coins exist
and are unspent, 2) the total input value is not less than the total
output value, and 3) the transaction includes the correct signatures
of the input UTXO owners. If a transaction meets all three condi-
tions, a peer executes it by updating its system state. Checking the
first condition is stateful, whereas checking the second and third
conditions is stateless. In fact, as long as the input UTXO properties
(i.e., owner address, amount, etc.) are available, the second and third
conditions can be checked at any time.

To reduce the execution latency of dependent transactions, we
propose dependent transaction pre-verification (DPV), which per-
forms dependent transaction signature verification in parallel with
the locking phase. In order to accommodate this idea, the output
shard must be informed about the cross-shard transactions’ output
UTXO properties early. Figure 9b illustrates how we achieve this
by splitting the COMMIT request into two messages, namely OUTPUT
and LOCK-SIG. The OUTPUT message carries only the cross-shard
transaction and is sent to the output shard as soon as the LOCK
request is sent to the input shard. 𝑆ℎ𝑎𝑟𝑑2 can start verifying the
signatures of 𝑡𝑥2 and 𝑡𝑥3 as soon as it receives the OUTPUTmessage.
Meanwhile, the input shard is verifying 𝑡𝑥1’s signature(s). On the
other hand, the LOCK-SIG message carries the input shard signa-
tures as well as a hash of the transaction, which is used to match the
LOCK-SIG message with the corresponding OUTPUT message. The
LOCK-SIGmessage serves as proof that the input shard has success-
fully locked the input UTXOs of 𝑡𝑥1. The OUTPUT and LOCK-SIG
messages are later assembled into one COMMIT request so that the
original COMMIT request processing routine can be reused. DPV
also applies to cascading dependencies, e.g., 𝑡𝑥3 may depend on
𝑡𝑥2 instead of 𝑡𝑥1, and cross-shard dependent transactions. In the

DEBS ’22, June 27-July 1, 2022, Copenhagen, Denmark Liuyang Ren, Paul A. S. Ward, and Bernard Wong

Client
(ACP

coordinator)

Shard1

Shard2

LOCK<tx1>
vrf and exe

LOCK<tx1> LOCK-OK<tx1, sigs1>

COMMIT<tx1>
vrf and exe

tx2 tx3

tx2
sig vrf

tx2
exe

REPLY<tx1> REPLY<tx3>

time

time

 tx3
sig vrf time

REPLY<tx2>

tx3
exe

COMMIT<tx1, sigs1>

COMMIT<tx1>
vrf and exe

(a) Plain Atomix

Shard1

Shard2

LOCK<tx1>
vrf and exe

LOCK<tx1> LOCK-OK<tx1, sigs1>

COMMIT<tx1>
vrf and exe

tx2 tx3

tx2
sig vrf

tx2
exe

REPLY
<tx1>

time

time

 tx3
sig vrf

time
tx3
exe

LOCK<tx1>
vrf and exe

OUTPUT
<tx1> LOCK-SIG<tx1_hash, sigs1>

REPLY
<tx2>

client
(ACP

coordinator)
REPLY
<tx3>

(b) Atomix with dependent transaction pre-verification

Figure 9: DPV parallelizes the Atomix lock phase with dependent transaction signature verification.

latter case, the output shard pre-verifies the LOCK requests of the
cross-shard dependent transactions. DPV pre-verifies dependent
transactions in their appearance order on shard ledgers.

DPV is safe, i.e., invalid transactions will not be mistakenly
treated as valid ones. For parent cross-shard transactions, although
dishonest clients may send dummy OUTPUT messages, the transac-
tions will not be executed without valid signatures from the input
shards. In other words, LOCK-SIG messages from input shards pro-
tect output shard’s system states from being tampered with. For
dependent transactions, DPV may verify their signatures but does
not execute them until their parent transactions are executed. As a
result, a dummy OUTPUT message cannot induce the output shard
to execute either the cross-shard transaction or the dependent
transactions. Nevertheless, the computational work involved in pre-
verifying dependent transactions is wasted, so peers should only
pre-verify dependent transactions when CPUs are idle to avoid per-
formance degradation and DoS attacks caused by dummy OUTPUT
messages.

5.2 Atomic Commit Protocol Consolidation
As RGP2 takes transaction dependencies into account, the vast ma-
jority of cross-shard transactions are placed to one of their input
shards. We refer to such output shards as input-output shards, i.e.,
Shard1 in Figure 10a. This placement pattern is quite different than
that of hashing placement, which only places a few transactions
to their input shards, as illustrated in Figure 11a. This difference
opens up opportunities for atomic commit protocol optimization.
Specifically, the lock and commit requests can be combined into one
request for the input-output shard. Figure 10 takes Atomix as an
example in order to illustrate atomic commit protocol consolidation
(ACPc). Instead of requesting the two input shards to lock the cor-
responding UTXOs as in Figure 10b, consolidated Atomix merges

the LOCK request and the COMMIT request into a LOCK&COMMIT re-
quest for the input-output shard (Figure 10c). Upon receiving the
LOCK&COMMIT request, the input-output shard checks for the fol-
lowing conditions: 1) the input UTXO(s) to lock exist, and the
transaction is signed properly by the owners, 2) the signatures
from other input shards are valid, and 3) total input value is not
less than the total output value. If all the three conditions are met,
the input-output shard deems the transaction valid and executes
the transaction by removing the input UTXO(s) and adding output
UTXO(s) to its UTXO database. Otherwise, the input-output shard
informs the client about failed locking using a signed LOCK-NOT-OK
message, which can be used as proof to restore input UTXOs in
other input shards.

In the successful scenario, consolidated Atomix saves two mes-
sages, one shard signature, and one consensus round. For two-
input-shard transactions, the saving is almost half of the processing
cost, which includes five messages, two shard signatures, and three
consensus rounds (two for ordering the LOCK requests and one for
ordering the COMMIT request), as shown in Figure 10b. Considering
that over 50% of cross-shard transactions touch only two input
shards, and over 80% of cross-shard transactions span two to four
input shards (Figure 11b), ACPc should produce obvious perfor-
mance improvement. One may notice that there is a small portion
(around 1.4%) of cross-shard transactions with one input shard. Such
transactions are not placed to their input shards probably for the
purpose of load balancing. They will not benefit from ACPc since
they lack input-output shards. The input shard count distribution
in Figure 11b results from the fact that parent transaction counts
follow a power-law distribution [30]. Other transaction datasets in
Table 2 show the same pattern as dataset 𝐷1 does in Figure 11.

ACPc is compatible with DPV. When the two techniques are
deployed together, the LOCK&COMMIT message in Figure 10c splits
into two parts: one message carrying the transaction, and the other

Toward Reducing Cross-Shard Transaction Overhead in Sharded Blockchains DEBS ’22, June 27-July 1, 2022, Copenhagen, Denmark

Cross-shard
transaction tx
Input:
UTXO1 (Shard1)
UTXO2 (Shard2)

Output:
UTXO3 (Shard1)

(a) Input-output shard

Client

Shard1 Shard2

LOCK <t
x>

LO
C

K
 <

tx
>

Client

Shard1 Shard2

LOCK-O
K

<s
igs 1

>

LO
C

K
-O

K
<s

ig
s 2

>

Client

Shard1 Shard2

COMMIT

<tx,
 sig

s 1,
 sig

s 2>

UTXO1 UTXO2 UTXO1 UTXO2 UTXO3

(b) Plain Atomix

Client

Shard1 Shard2

LO
C

K
 <
tx

>

Client

Shard1 Shard2

LO
C

K
-O

K
<s
ig
s 2

>

Client

Shard1 Shard2

LO
CK
&C
OM
M
IT

<tx
, si
gs 2

>

UTXO1 UTXO2 UTXO1 UTXO2
UTXO1
UTXO3

(c) Consolidated Atomix

Figure 10: Consolidation of Atomix

4 16 128

Number of shards

0

20

40

60

80

100

%
 o

f
cr

o
ss

-s
h
ar

d
 t

x
n
s

w
it

h
 a

n
 i

n
p
u
t-

o
u
tp

u
t

sh
ar

d

HP

RGP2

(a) Cross-shard transactions with
input-output shards

0 50 100

Input shard count

0

25

50

75

100

C
u
m

u
la

ti
v
e

p
er

ce
n
ta

g
e

(%
)

128 shards

16 shards

(b) CDF of input shard count

Figure 11: The vast majority of cross-shard transactions
are assigned to one of their input shards under RGP2, and
over 80% of cross-shard transactions have 2∼4 input shards
(dataset 𝐷1).

carrying the signatures from other input shards as well as a hash of
the transaction. The input-output shard utilizes the former to pre-
verify dependent transactions, and the latter to learn the commit
votes of other input shards.

6 EVALUATION
We implemented RGP2 as a client-side algorithm, which means a
client runs the algorithm to compute the output shard ID before
sending its transaction to blockchain peers. This architecture has
also been employed by OptChainV2.

We also implemented OptChainV2 as well as an OmniLedger-
like sharding protocol based on Bitcoin Core [7]. In the OptChainV2
paper, the authors modify the OmniLedger protocol to avoid exces-
sive bandwidth usage by letting clients send requests directly to the
destination shards instead of gossiping requests. We make the same
modification to OmniLedger. In addition, each peer maintains a
dependency graph of pending transactions to enforce dependency-
respect transaction execution order. We also implemented DPV
and ACPc, and measured the system performance when they are
deployed together with RGP2.

6.1 Testbed
Experiments are done on a local cluster. We run up to 64 peers on
16 machines, each of which has dual Xeon E5-2620 at 2.1 GHz (12
cores) and 64GB RAM. A shard consists of four peers co-located
on the same machine. Each peer is scheduled on two fixed cores

for isolation purposes. To emulate a geo-distributed environment,
network delay is injected between each pair of peers, and bandwidth
limits are imposed on every peer using Linux NetEm and traffic
control facilities. Properties of links between peers co-located on
the samemachine are also configurable through loopback interfaces.
One client runs on another machine with dual Xeon E5-2630 at
2.6 GHz (12 cores, 2 hyperthreads per core) and 256GB RAM. The
client reads historical transactions from the Bitcoin blockchain
sequentially and sends them to the peers. To measure the maximum
throughput of the system, we must saturate the peers with client
requests. Considering the high processing power of the cores, we
throttle each peer at 50% CPU usage.

To evaluate the performance improvement under different types
of workloads, two transaction datasets are employed: transactions
in Bitcoin block [0, 136k) and transactions in Bitcoin block [200k,
205k). The first dataset contains simple dependencies, whereas
the second dataset is on the opposite, according to Table 3. Both
datasets consist of approximately 1 million transactions. In 6.2 and
6.3, we measure the system performance under the two workloads
with a 40ms round-trip delay injected between every pair of peers,
and a 200-Mbps bandwidth limit imposed on every peer. This mild
network configuration allows us to saturate the peers without satu-
rating the network. The impacts of various network configurations
will be evaluated in section 6.4.

6.2 Performance Under Light-Dependency
Workload

We compare the performance of four systems. In the first system,
the client places transactions to shards according to OptChainV2; in
the second system, we replace OptChainV2 with RGP2; in the third
system, we add DPV to the second system; in the fourth system,
we add ACPc to the third system. In figures presenting experimen-
tal results, the four systems are denoted by OptChainV2, RGP2,
RGP2+DPV, and RGP2+DPV+ACPc, respectively. Figure 12 demon-
strates that all four systems scale with the number of shards. The
performance of RGP2 is very close to that of OptChainV2. Adding
DPV does not improve the performance due to the simple transac-
tion dependencies, but adding ACPc improves the throughput by
approximately 20% and reduces the average execution latency by
75% at the specified transaction rates.

Next, we compare the four systems from different aspects in a
16-shard environment. From Figure 13a, one can see that ACPc im-
proves the maximum throughput by 37%. Furthermore, Figure 13b

DEBS ’22, June 27-July 1, 2022, Copenhagen, Denmark Liuyang Ren, Paul A. S. Ward, and Bernard Wong

[4, 3k] [8, 4k] [12, 4.5k][16, 5k]

[Number of shards, txn rate (tps)]

0

1000

2000

3000

4000

5000

T
h
ro

u
g
h
p
u
t

(t
p
s)

OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(a) Throughput

[4, 3k] [8, 4k] [12, 4.5k][16, 5k]

[Number of shards, txn rate (tps)]

0

2000

4000

6000

8000

A
v
er

ag
e

la
te

n
cy

 (
m

s) OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(b) Latency

Figure 12: Scalability

shows that, the first three systems become overloaded when trans-
actions arrive at a 3.8k-tps rate, so the throughput can no longer
grow linearly with the transaction rate. ACPc raises the turning
point to 5k tps. Unsurprisingly, the latency CDF of OptChainV2,
RGP2, and RGP2+DPV are fairly close as well. In contrast, ACPc
significantly shortens tail latency: the 95th percentile latency is
cut down by 83%, from 30s to 5s. ACPc’s success in reducing tail
latency implies that slow cross-shard transactions are the reason
of long tail latency.

To better understand the performance of the four systems, we
investigate the number of dependency-bound requests. In our ex-
periments, single-shard transactions are wrapped in a TX requests,
whereas cross-shard transactions are accomplished via LOCK and
COMMIT requests as in Atomix. Dependency-bound requests refer
to TX requests and LOCK requests that are waiting for their parent
transactions to be executed, so that their input UTXOs become
available. Figure 13d shows how the number of dependency-bound
requests varies over time, where the y-axis represents the sum of
dependency-bound requests across all shards. Unsurprisingly, the
curve does not climb up in the first 100s because most transactions
are coinbase transactions at the early stage of Bitcoin. After that,
the RGP2+DPV+ACPc curve climbs much slower than the other
three curves because cross-shard transactions are processed faster
and thus hinder less dependent transactions. Contrary to intuition,
DPV does not reduce dependency-bound requests. The reason will
be given by a comparative analysis in Section 6.3.

6.3 Performance Under Heavy-Dependency
Workload

Transactions in blocks [200k, 205k) contain more predecessor-
dependent transactions, hence a challenging workload. Neverthe-
less, RGP2 can still match the performance of OptChainV2 as
demonstrated in Figure 14a ∼ 14c. Moreover, adding DPV to the
system improves the maximum throughput from 1.9k tps to 2.7k tps
(42% up), and ACPc further boosts the maximum throughput to 3.9k
tps (another 44% up). In other words, DPV and ACPc together dou-
ble the maximum throughput of the system. Besides, DPV notably
lowers tail execution latency: the 95th percentile latency is halved.
ACPc also improves execution latency due to the lower cross-shard
transaction cost. As a result, DPV and ACPc collectively reduced
the 50th percentile latency and 95th percentile latency by 80% and
84% respectively.

DPV improves the system performance because it reduces the
number of dependency-bound requests, as shown in Figure 14d.

2000 3000 4000 5000 6000
Throughput (tps)

0

1

2

3

4

5

A
ve

ra
ge

 la
te

nc
y

(s
) OptChainV2

RGP2
RGP2+DPV
RGP2+DPV+ACPc

(a) Average latency versus
throughput

2500 3500 4500 5500 6500

Transaction rate (tps)

2500

3500

4500

5500

T
h

ro
u

g
h

p
u

t
(t

p
s)

OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(b) Throughput versus transac-
tion rate

0 20 40 60

Latency (s)

0

20

40

60

80

100

C
u

m
u

la
ti

v
e

p
er

ce
n

ta
g

e
(%

)

OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(c) Cumulative latency

0 100 200 300

Time (s)

0.00

0.25

0.50

0.75

1.00

D
ep

en
d

en
cy

-b
o

u
n

d
re

q
u

es
ts

1e5

OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(d) Dependency-bound requests

Figure 13: Performance with light-dependency transactions
(16 shards). The transaction rate is 5k tps in the last two
subfigures.

1000 2000 3000 4000 5000
Throughput (tps)

0

10

20

30

40

50

A
ve

ra
ge

 la
te

nc
y

(s
)

OptChainV2
RGP2
RGP2+DPV
RGP2+DPV+ACPc

(a) Average latency versus
throughput

1000 2000 3000 4000 5000 6000

Transaction rate (tps)

1000

2000

3000

4000

T
h

ro
u

g
h

p
u

t
(t

p
s)

OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(b) Throughput versus transac-
tion rate

0 50 100 150 200

Latency (s)

0

20

40

60

80

100

C
u

m
u

la
ti

v
e

p
er

ce
n

ta
g

e
(%

)

OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(c) Cumulative latency

0 200 400 600
Time (s)

0

1

2

3

4
D

ep
en

de
nc

y-
bo

un
d

re
qu

es
ts

1e5
OptChainV2
RGP2
RGP2+DPV
RGP2+DPV+ACPc

(d) Dependency-bound requests

Figure 14: Performance with heavy-dependency transactions
(16 shards). The transaction rate is 3k tps in the last two
subfigures.

With DPV, dependency-bound requests could be pre-verified and
later executed immediately after their parent transactions are exe-
cuted. Therefore, such pre-verified requests have shorter execution
latency and are less likely to stall other requests. ACPc also reduces
the dependency-bound requests, as cross-shard transactions are
processed efficiently and thus become less hindering.

The discrepancy between DPV’s performance under the light-
dependency workload and that under the heavy-dependency work-
load is due to the different ratios of dependency-bound requests
to pending commit requests. For example, in Figure 15a, where
the ratio is 1:1, DPV only reduces the overall processing time by

Toward Reducing Cross-Shard Transaction Overhead in Sharded Blockchains DEBS ’22, June 27-July 1, 2022, Copenhagen, Denmark

𝑡2, which equals the signature verification time of the dependent
request. DPV cannot take advantage of the idling period 𝑡1 since
there are no more dependent requests to pre-verify. By contrast, in
Figure 15b, where the ratio is 5:1, DPV significantly shortens the
overall processing time.

with DPV

LOCK<tx1>
vrf and exe

 sig
vrf exe

LOCK

LOCK<tx1>
vrf and exe

COMMIT sig
vrf exe

LOCK

Input
Shard

Output
Shard

Input
Shard

Output
Shard

t1 t2

without DPV

COMMIT

(a) Light dependencies

with DPV

without DPV

LOCK<tx1>
vrf and exe

 sig
vrf exe

LOCK

exeexe sig
vrf

 sig
vrf

 sig
vrf

 sig
vrf exeexe

LOCK<tx1>
vrf and exe

COMMIT sig
vrf exe

LOCK

 sig
vrf exe sig

vrf exe sig
vrf exe sig

vrf exe

Input
Shard

Output
Shard

Input
Shard

Output
Shard

t3

COMMIT

(b) Heavy dependencies

Figure 15: DPV saves more time for heavy-dependency work-
loads.

6.4 Performance Under Various Network
Configurations

Transactions in blocks [200k, 205k) are used in this section, as depen-
dencies in blocks [0, 136k) are too simple to show the effectiveness
of DPV. Figure 16a and 16b demonstrate that all four systems suffer
performance drop as network delay grows. The RGP2+DPV curve
goes down faster than the RGP2 curve because long network delays
“shift" the performance bottleneck from computation to network,
but DPV only optimizes computation. The OptchainV2 curve also
decreases more rapidly than the RGP2 curve. We suspect the reason
is that OptChainV2 estimates the transaction queuing delay of a
shard by sampling the recent execution rate (denoted by 𝑟𝑒) and
the transaction queue length (denoted by 𝑛𝑞). Ideally, 𝑟𝑒 · 𝑛𝑞 would
be the queuing delay that a new transaction would experience if
placed to the shard. However, with a high network delay between
peers, the high 𝑛𝑞 value amplifies the sampling error of 𝑟𝑒 .

In terms of bandwidth, all four systems can achieve their full
potential at 50Mbps bandwidth. Extremely low bandwidth hurts
the performance of all systems, with DPV suffering the most. This
results from the same aforementioned reason—network becomes
the bottleneck instead of computation. In general, ACPc and DPV
jointly improve the system performance significantly under all
network conditions, though DPV alone is not very helpful in harsh
network environments.

0 50 100 150 200

Round-trip delay between peers (ms)

0

1000

2000

3000

T
h

ro
u

g
h

p
u

t
(t

p
s)

OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(a) Throughput versus delay

0 50 100 150 200

Round-trip delay between peers (ms)

0

100

200

300

400

A
v

er
ag

e
la

te
n

cy
 (

s)

OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(b) Latency versus delay

0 50 100 150 200

Bandwidth (Mbps)

0

1000

2000

3000

T
h

ro
u

g
h

p
u

t
(t

p
s)

OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(c) Throughput versus bandwidth

0 50 100 150 200

Bandwidth (Mbps)

0

50

100

150

A
v

er
ag

e
la

te
n

cy
 (

s)

OptChainV2

RGP2

RGP2+DPV

RGP2+DPV+ACPc

(d) Latency versus bandwidth

Figure 16: Performance under various network conditions
(16 shards, 3k-tps transaction rate)

7 DISCUSSION
7.1 Advantage of RGP
Although RGP does not surpass OptChainV2 in performance, it of-
fers two big advantages in other aspects. First, RGP does not require
trust in entities other than the blockchain network. Specifically, in-
formation about ancestor transactions—e.g., their respective output
shards and whether they are partially spent—are all available on
shard ledgers; the partition size of a shard can be estimated with the
number of transactions on the shard’s ledger. By contrast, to place
a transaction with OptChainV2, the client must obtain the fitness
score arrays of the parent transactions, which could be from other
clients. Therefore, client-to-client trust is necessary to guarantee
reliable fitness score array “transfer”. We consulted the authors
about this issue, and the two example use cases they provided are
to run OptChainV2 as a public service or inside secure hardware
(e.g., TEE). Second, RGP does not rely on extra information about
shards, i.e., information that cannot be inferred from shard ledgers.
Conversely, OptChainV2 requires clients to frequently sample the
transaction queue size of every shard for transaction latency estima-
tion. In addition to communication overhead and poor scalability
with the number of clients, the sampling is also faced with a security
challenge—gleaning true transaction queue sizes from Byzantine-
faulty peers is not trivial.

7.2 Generalization
In this section, we discuss whether RGP, DPV, and ACPc can gen-
eralize to account-balance blockchains. Firstly, RGP is not appli-
cable to account-balance blockchains. As mentioned in Section 3,
cross-shard transaction reduction in account-balance blockchains
is achieved through account placement [11] [23]. Although a graph
of accounts could be employed to partition accounts, RGP does not
apply to such graphs. This is because RGP is essentially a streaming
graph partitioning algorithm, but accounts are not created in a
streaming manner.

DEBS ’22, June 27-July 1, 2022, Copenhagen, Denmark Liuyang Ren, Paul A. S. Ward, and Bernard Wong

DPV can be adapted to account-balance blockchains by modi-
fying the definition of dependent transactions accordingly. In an
account-balance blockchain, dependencies should be established
based on read-write conflicts or write-write conflicts. For exam-
ple, if two transactions 𝑡𝑥1 and 𝑡𝑥2 both update the same account,
and 𝑡𝑥1 is ordered before 𝑡𝑥2 on the shard ledger, then 𝑡𝑥2 is a
dependent transaction of 𝑡𝑥1 and must be executed after 𝑡𝑥1. Once
dependent transactions are identified, their signatures can be veri-
fied before their parent transactions are executed, because signature
verification comprises only stateless computing.

Lastly, ACPc does not generalize to account-balance blockchains
due to the fundamental difference between the UTXO model and
the account-balance model. In the UTXO model, a UTXO is not
supposed to be spent by two or more transactions, so input shards
do not have to know the commit decision if the cross-shard trans-
action succeeds. In other words, the two following scenarios are
equivalent in terms of preventing future transactions from claim-
ing input UTXO(s) of a cross-shard transaction: 1) the input shard
receives a message confirming the transaction’s successful exe-
cution, and 2) the input shard does not receive any message in-
dicating whether the transaction succeeds or not. However, in
account-balance blockchains, an account could be updated by mul-
tiple transactions. Thus, transaction isolation should be enforced
to avoid concurrency issues [5][15]. Therefore, all shards involved
in a transaction must be aware of the commit decision, so that they
can release the involved accounts for other transactions to access.
As a result, no shard can skip sending its LOCK response to the
coordinator, which renders ACPc inapplicable.

8 CONCLUSION
Hashing placement is a common transaction placement algorithm
used in blockchain sharding protocols, but produces a large num-
ber of cross-shard transactions due to dependency ignorance. We
have developed Rooted Graph Placement and demonstrated that it
significantly reduces cross-shard transactions. By considering two
levels of ancestor transactions, RGP can match the performance
of OptChainV2, a state-of-the-art transaction placement algorithm
with special trust requirements. For the remaining cross-shard trans-
actions, we have devised Dependent Transaction Pre-verification
and Atomic Commit Protocol Consolidation to lower their impact
on the system performance. DPV takes advantage of idling compu-
tational resources, and ACPc reduces both computational work and
network usage. Our experiments have demonstrated that DPV and
ACPc jointly can double the maximum throughput under heavy-
dependency workloads.

REFERENCES
[1] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2021. Sharper:

Sharding permissioned blockchains over network clusters. In Proceedings of the
2021 International Conference on Management of Data. ACM, Xi’an, China, 76–88.

[2] Blockchain.com. 2021. Bitcoin Explorer. https://www.blockchain.com/btc/tx/
91c40e195524962aa3e6cd588e2038b392368382d0815aba7034f51c3ce2579b. Ac-
cessed: 2021-09-08.

[3] Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault tolerance. In
OSDI, Vol. 99. USENIX, New Orleans, 173–186.

[4] Kyle Croman, Christian Decker, Ittay Eyal, et al. 2016. On scaling decentral-
ized blockchains. In International conference on financial cryptography and data
security. Springer, Barbados, 106–125.

[5] Hung Dang, Tien Tuan Anh Dinh, et al. 2019. Towards scaling blockchain systems
via sharding. In Proceedings of the 2019 International Conference on Management

of Data. ACM, Amsterdam, 123–140.
[6] Christian Decker and Roger Wattenhofer. 2015. A fast and scalable payment

network with bitcoin duplex micropayment channels. In Symposium on Self-
Stabilizing Systems. Springer, Edmonton, Canada, 3–18.

[7] Bitcoin Core Developers. 2020. Bitcoin Core integration/staging tree. GitHub.
https://github.com/bitcoin/bitcoin Last accessed 15 Jun 2020.

[8] ethereum.org. 2022. Shard chains. https://ethereum.org/en/upgrades/shard-
chains/. Accessed: 2022-02-27.

[9] eth.wiki. 2022. On sharding blockchains FAQs. https://eth.wiki/sharding/
Sharding-FAQs. Accessed: 2022-02-28.

[10] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. 2016.
Bitcoin-ng: A scalable blockchain protocol. In 13th USENIX symposium on net-
worked systems design and implementation (NSDI 16). USENIX, Santa Clara, 45–59.

[11] Enrique Fynn and Fernando Pedone. 2018. Challenges and pitfalls of partitioning
blockchains. In 2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W). IEEE, Luxembourg, 128–133.

[12] James N Gray. 1978. Notes on data base operating systems. In Operating Systems.
Springer, Berlin, 393–481.

[13] Rachid Guerraoui and JingjingWang. 2017. How fast can a distributed transaction
commit?. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems. ACM, Chicago, 107–122.

[14] Jelle Hellings, Daniel P. Hughes, et al. 2020. Cerberus: Minimalistic Multi-shard
Byzantine-resilient Transaction Processing. arXiv:2008.04450 [cs.DC]

[15] Jelle Hellings and Mohammad Sadoghi. 2021. Byshard: Sharding in a byzantine
environment. Proceedings of the VLDB Endowment 14, 11 (2021), 2230–2243.

[16] George Karypis and Vipin Kumar. 1995. Multilevel graph partitioning schemes. In
Proceedings of The International Conference on Parallel Processing. ACM, Urbana-
Champain, 113–122.

[17] Sanghyeok Kim, Jeho Song, Sangyeon Woo, Youngjae Kim, and Sungyong Park.
2019. Gas consumption-aware dynamic load balancing in ethereum sharding
environments. In 2019 IEEE 4th International Workshops on Foundations and
Applications of Self* Systems (FAS* W). IEEE, Umea, Sweden, 188–193.

[18] Eleftherios Kokoris-Kogias, Philipp Jovanovic, et al. 2018. Omniledger: A secure,
scale-out, decentralized ledger via sharding. In 2018 IEEE Symposium on Security
and Privacy (SP). IEEE, San Francisco, 583–598.

[19] Butler Lampson and Howard E Sturgis. 1979. Crash recovery in a distributed
data storage system.

[20] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. 2015. Inclusive block
chain protocols. In International Conference on Financial Cryptography and Data
Security. Springer, Puerto Rico, 528–547.

[21] Chenxing Li, Peilun Li, Dong Zhou, Wei Xu, Fan Long, and Andrew Yao.
2018. Scaling Nakamoto Consensus to Thousands of Transactions per Second.
arXiv:1805.03870 [cs.DC]

[22] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert,
and Prateek Saxena. 2016. A secure sharding protocol for open blockchains. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, Vienna, Austria, 17–30.

[23] Avi Mizrahi and Ori Rottenstreich. 2020. Blockchain State Sharding with Space-
Aware Representations. IEEE Transactions on Network and Service Management
18, 2 (2020), 1571–1583.

[24] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized Business Review (2008), 21260.

[25] Lan N Nguyen, Truc DT Nguyen, Thang N Dinh, and My T Thai. 2019. OptChain:
optimal transactions placement for scalable blockchain sharding. In 2019 IEEE
39th International Conference on Distributed Computing Systems (ICDCS). IEEE,
Dallas, Texas, 525–535.

[26] Lan N Nguyen, Truc DT Nguyen, Thang N Dinh, and My T Thai. 2021.
OptChain: optimal transactions placement for scalable blockchain sharding.
arXiv:2007.08596v2 [cs.DC]

[27] Lawrence Page, Sergey Brin, et al. 1999. The PageRank citation ranking: Bringing
order to the web. Technical Report. Stanford InfoLab.

[28] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable
off-chain instant payments.

[29] Ling Ren, Kartik Nayak, Ittai Abraham, and Srinivas Devadas. 2017. Practical
synchronous byzantine consensus. arXiv:1704.02397 [cs.DC]

[30] Liuyang Ren and Paul A. S. Ward. 2021. Transaction Placement in Sharded
Blockchains. arXiv:2109.07670 [cs.DC]

[31] Dale Skeen. 1981. Nonblocking commit protocols. In Proceedings of the 1981
ACM SIGMOD international conference on Management of data. ACM, Ann Arbor
Michigan, 133–142.

[32] Isabelle Stanton and Gabriel Kliot. 2012. Streaming graph partitioning for large
distributed graphs. In Proceedings of the 18th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. ACM, Beijing, 1222–1230.

[33] Douglas R Stinson. 2005. Cryptography: theory and practice. Chapman and
Hall/CRC, London.

[34] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. Rapidchain:
Scaling blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. ACM, Toronto, 931–948.

https://www.blockchain.com/btc/ tx/91c40e195524962aa3e6cd588e2038b392368382d0815aba7034f51c3c e2579b
https://www.blockchain.com/btc/ tx/91c40e195524962aa3e6cd588e2038b392368382d0815aba7034f51c3c e2579b
https://github.com/bitcoin/bitcoin
https://ethereum.org/en/upgrades/shard-chains/
https://ethereum.org/en/upgrades/shard-chains/
https://eth.wiki/sharding/Sharding-FAQs
https://eth.wiki/sharding/Sharding-FAQs
https://arxiv.org/abs/2008.04450
https://arxiv.org/abs/1805.03870
https://arxiv.org/abs/2007.08596v2
https://arxiv.org/abs/1704.02397
https://arxiv.org/abs/2109.07670

	Abstract
	1 Introduction
	2 Background
	2.1 Unspent Transaction Output (UTXO) Model
	2.2 Blockchain Sharding Protocols

	3 Related Work
	3.1 Transaction placement in UTXO-based blockchains
	3.2 Account placement in account-balance blockchains

	4 Rooted Graph Placement
	4.1 Cross-shard Transaction Reduction
	4.2 Load Balancing
	4.3 Impacts of Parameters
	4.4 Partitioning Quality Comparison

	5 Efficient Cross-shard Transaction Processing
	5.1 Dependent Transaction Pre-verification
	5.2 Atomic Commit Protocol Consolidation

	6 Evaluation
	6.1 Testbed
	6.2 Performance Under Light-Dependency Workload
	6.3 Performance Under Heavy-Dependency Workload
	6.4 Performance Under Various Network Configurations

	7 Discussion
	7.1 Advantage of RGP
	7.2 Generalization

	8 Conclusion
	References

