Deriving a Realistic Workload Model to Simulate High-Volume
Financial Data Feeds for Performance Benchmarking

Vladimir Sladojevic¢
vladimir.sladojevic@mail.polimi.it
Politecnico di Milano
Italy

Alexander Echler
alexander.echler@infrontfinance.com
Infront Financial Technology GmbH
Germany

ABSTRACT

Processing financial market data at scale and in real-time poses a
set of unique challenges to event-driven architectures due to the
volume, variety, velocity, and veracity of the enclosed information
on top of other constraints. Reproducible stress tests at scale using
configurable benchmarks are key to building and tuning suitable
processing systems. Available benchmarks, however, lack realistic
and configurable workload models for market data scenarios. In pre-
vious work we already addressed this gap by describing the specific
challenges of processing financial data at scale and by introducing a
modular open-source benchmarking framework. This paper makes
two contributions to the ongoing challenge of building realistic
benchmarks for the financial data processing domain by outlining:
(a) a detailed statistical analysis of real-world financial market data
feeds processed on a global scale by Infront Financial Technology
GmbH; and (b) a simple workload model built on this analysis to
simulate high-volume market data feeds with their distinctive char-
acteristics to be used in benchmarks. We evaluate our model using
the DEBS 2022 Grand Challenge data set Trading Data.

CCS CONCEPTS

« Information systems — Information systems applications;
« Computing methodologies — Modeling and simulation; «
Applied computing — Event-driven architectures.

KEYWORDS

Event-based systems, financial data, benchmark, workload model

ACM Reference Format:

Vladimir Sladojevié, Sebastian Frischbier, Alexander Echler, Mario Paic,
and Alessandro Margara. 2022. Deriving a Realistic Workload Model to
Simulate High-Volume Financial Data Feeds for Performance Benchmarking.
In The 16th ACM International Conference on Distributed and Event-based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DEBS °22, June 27-30, 2022, Copenhagen, Denmark

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9308-9/22/06...$15.00
https://doi.org/10.1145/3524860.3539653

Mario Paic
Mario.Paic@infrontfinance.com
Infront Financial Technology GmbH

Germany Italy

Sebastian Frischbier

sebastian.frischbier@infrontfinance.com
Infront Financial Technology GmbH

Germany

Alessandro Margara
alessandro.margara@polimi.it
Politecnico di Milano

Systems (DEBS ’22), June 27-30, 2022, Copenhagen, Denmark. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3524860.3539653

1 INTRODUCTION

Data is the oil fuelling financial markets, enabling market partic-
ipants to decide on investments, spot trends, and react to significant
events. High-volume streams of fine-granular and time-sensitive
event notifications, called market data feeds, need to be processed,
analyzed, and enriched with low latency to generate actionable
knowledge before it becomes outdated. As one of Europe’s leading
providers of financial data and regulatory solutions, Infront
Financial Technology GmbH (part of Infront group, fk.a. vwd
Vereinigte Wirtschaftdienste GmbH) processes a daily average
of 40 billion market data event notifications from 500+ sources.
The core processing systems handle daily peak rates of 2+ million
notifications per second by relying on publish-subscribe (PS)
architectures in addition to applying event stream-processing (ESP)
and complex event-processing (CEP).

As part of ongoing work, we stress-test modern open-source
platforms continuously with real data and micro benchmarks. Our
long-term goal is to provide the community with a configurable
open-source benchmarking tool to assess and compare ESP systems
in financial application scenarios regarding their performance
with realistic, controllable, and repeatable workloads. In previous
work, we already proposed a modular open-source benchmarking
framework [3] to address the lack of suitable systems. The work
presented here aims at stress-testing the processing capabilities
of ESP systems regarding throughput and latency while reasoning
capabilities of a downstream CEP engine (e.g., pattern detection)
are out of scope. Consequently, we focus on the characteristics
of market data that are necessary to derive realistic workload
definitions from. The semantics of the data are out of scope.

In this paper, we focus on the workload data and provide two
novel contributions: (i) a detailed statistical analysis of real-world
financial market data feeds, and (ii) a simple yet accurate workload
model derived from the analysis, which enables simulating
high-volume market data feeds with their distinctive characteristics.
Our analysis captures the core characteristics of financial data
relevant for performance benchmarking and identifies five key
parameters that influence such characteristics. The derived model
builds on a small number of parameters and (1) enables to tune them
to simulate different scenarios; (2) enables the implementation of

https://orcid.org/0000-0002-3517-8090
https://doi.org/10.1145/3524860.3539653
https://doi.org/10.1145/3524860.3539653

DEBS ’22, June 27-30, 2022, Copenhagen, Denmark

lightweight data generators; (3) only relies on parameters that can
be easily understood and set by domain experts.

The document is structured as follows: Sec. 2 provides back-
ground information on the diversity of financial data and discusses
related work; Sec. 3 details the statistical analysis of financial data
as processed by Infront and describes the mathematical workload
model derived from the analysis; Sec. 4 evaluates the fit of our model
by comparing simulated data to the DEBS Grand Challenge 2022
data set Trading Data; Sec. 5 summarizes our contributions and
presents ongoing work.

2 BACKGROUND AND RELATED WORK

This section introduces key aspects of financial market data relevant
for the scope of this paper, distilling the detailed discussion presented
in [5]. We map the domain-specific terms to the nomenclature of the
community working on event-based systems and we highlight the
key differences of financial data with respect to data from other do-
mains by comparing with Internet of Things (IoT) scenarios. Then, we
describe the data sets used for our analysis and discuss related work.

2.1 Market data processing in a nutshell

Definition. Market data generally refers to time-sensitive and
fine-granular information about the latest trade activity regarding
a specific instance of a financial instrument called a (ticker) symbol.
Examples for financial instruments are equities, funds, and indices
while the stock of IBM is an instance of an equity. Market data is
being made available at various levels of granularity and up-to-
dateness, ranging from aggregated summaries to fine-granular and
up-to-date ticks published by a specific exchange. Publishers are
identified by a global Market Identifier Code (MIC) and financial
instruments by an exchange-specific alpha-numeric identifier; the
latter can vary so that the same instrument instance is sometimes
traded using different symbols depending on the exchange. In
consolidated and normalized feeds such ambiguous identifiers are
already mapped to a format specific to the feed provider.

Nomenclature. We map the key terms from the domain of financial
market data to those used in the event-processing community. Finan-
cial information delivered at different levels of granularity and timeli-
ness can be directly mapped to the three different levels of event com-
plexity regarding detection and processing: raw data like ticks resem-
ble simple events while aggregates such as moving and weighted av-
erages translate to composite events; further condensed and enriched
information maps to complex events. In this nomenclature, exchanges
map to sources/publishers; feeds to event streams that are being sub-
scribed to while instrument types and (ticker) symbols are part of
the identifier/payload of an event notification. Order is preserved
only per symbol by each exchange; as a feed can contain data from
multiple exchanges, the overall order in a feed cannot be guaranteed.

How is financial market data different? We highlight some key dis-
tinguishing features of financial market data by comparing with data
fromIoT scenarios, which are wellknown by the community working
on event-based systems. The two domains differ significantly in key
characteristics that have a massive impact on the ESP’s performance
when processing notifications. These singularities must be reflected
in a realistic workload model for market data benchmarks. Hence,

Sladojevic et al.

we briefly compare market data processing to IoT data processing
based on [1, 5, 13], grouping by topology, source, and data.

Topology (dynamics, coordination, adaptation, connectivity).
Market data processing setups are static, stable, and not resource-
constrained compared to IoT setups: sources, ESP, and subscribing
systems communicate via redundant broadband connections
that are centrally coordinated and secured. Any kind of churn is
considered an incident in market data processing and not the norm
as it is in IoT scenarios. Same is true for mobility aspects that are
irrelevant for market data processing other than in IoT scenarios
where mobility of the ESP, data sources or subscribers is a central
element that needs to be considered by the system’s architecture.

Sources (identity, semantics, syntax, alternatives). Market data
sources are always known up-front regarding their identity,
trustworthiness, location, syntax, and semantics from an ESP’s
perspective. Another key difference is the availability of alternative
sources for the same data: in market data scenarios only a limited
number of alternative sources offer the same information while the
same type of sensor reading might be available from a multitude
of sources in IoT scenarios.

Data (volume, variety, velocity, veracity, quality). In market data
setups, the volume of data published by each source is usually
very high compared to data source in IoT setups that need to take
resource constraints into account. Same for the velocity and veracity
that are always extreme in market data scenarios, even when not
considering algorithmic trading. Load patterns are generally known
in advance in market data setups (but not the amplitude) while
mobility, churn, and other factors lead to unpredictable load patterns
inIoT scenarios as a norm. Variety is high in both scenarios.

Summarizing, requirements for IoT data processing differ
significantly from those relevant for market data. Hence, bench-
marks tailored to IoT scenarios are not suited to stress-test ESPs
in market data scenarios. Market data processing scenarios are
characterized by a trusted and stable setup with resources being
available in abundance. This allows to unburden the ESP from much
unsupervised ad-hoc adaptation and safeguarding capabilities
needed in more dynamic, untrusted, and resource-constrained IoT
scenarios. Conversely, ESPs in market data scenarios must be able
to deal with massive load spikes in addition to a high baseline of
volume, variety, and veracity to be consumed from each source.

2.2 Related work

Building scalable and realistic benchmarks for event-processing
systems remains an active area of research. In the context of this
paper we categorize relevant benchmarks in three categories with
regard to their workload model.

Application-specific benchmarks, such as the Pairs benchmark [10],
Linear Road [2], or Sparkbench [9] allow to manually define
workloads or use predefined data to fine-tune parameters of a
specific target system. For ESPs, these benchmarks also tend to aim
more on the correctness of a CEP engine’s reasoning and hence
focus on offering semantically rich and challenging workloads, with
volume becoming a secondary concern.

Benchmarking frameworks, such as CityBench [1], RloTBench [13],
bench [14], BigDataBench [15], or the framework by Karimov et
al. [8] are generally workload-agnostic. They focus on providing

Deriving a Realistic Workload Model to Simulate High-Volume Financial Data Feeds for Performance Benchmarking

scalable, versatile architectures to replay real data or to plug-in
third-party workload generators.

Scenario-driven benchmarks, such as SpecJMS [12] or the TPC*
benchmarks [11] use complex models to simulate semantically
correct interactions between actors based on a reduced model of
reality. These benchmarks scale by changing the actors’ population
or their interactions’ intensity. Consequently, the resulting
workload represents the effect of these interactions. Scenario-based
benchmarks require a simplified yet representative model of the
real-world scenario to be implemented. Unfortunately, none is
available for market data processing.

We focus on performance benchmarking and not on the
reasoning capabilities of a CEP. Consequently, benchmarks of the
first category do not cover our requirements. In previous work [3]
we already contributed to the second category of benchmarks by
providing an open-source framework that allows to define simple
workload patterns, plug-in workload generators or replay recorded
data. Building a scenario-based benchmark for financial data feed
systems similar to those of the third category is our long-term goal.
However, defining a reduced yet accurate model of the interaction
patterns of actors on the financial market with semantically correct
cause-effect relationships is out of scope of this work. In sum, our
work on a simple yet realistic workload model to simulate key
characteristics of high-volume market data feeds as presented here
is not yet covered by existing work.

3 A MODELFOR FINANCIAL DATA

This section introduces the real-world data we base this work on
(Sec. 3.1), the type of analysis we used to extract relevant features
(Sec. 3.2), and the model we derived from the analysis (Sec. 3.3).

3.1 Datasets used for analysis

We use four complementary sets of real-world data made available
by Infront Financial Technology GmbH (hereafter Infront) as shown
in Fig. 1. Three data sets are used to derive the model while the
fourth (recently published) data set is used to evaluate the model.

Consolidated feed sample [CFS]. This data set contains 308,290
events notifications published by 18 sources over the period of one
minute and 3.760 seconds in 2021; the data set covers all event types
processed at the highest available granularity for 30,918 symbols
and seven instrument types (bonds, certificates, equities, exchange
traded funds, indices, market depth). This data set is being used to
analyze attributes and their completeness across instrument types,
sources, and symbols.

Rate statistics sample in seconds [RSS]. This data set of 17,286 data
points contains statistics on rates per second for six sources (ex-
changes Frankfurt, Tokyo, London, Sydney, Hong Kong, NASDAQ)
captured over two average trading days. The data covers all event
types for a representative mix of instrument types and symbols
traded on these exchanges. This data is being used to identify rate
patterns over time at a high granularity and per source in order to
characterize typical rate patterns per source. Available at [4].

Infront daily rate statistics [DRS]. This data set of 451,072 data points
contains daily statistics about all event types processed in the ticker
plant of Infront from all 500+ global sources for the duration of

DEBS ’22, June 27-30, 2022, Copenhagen, Denmark

15 months covering 14 instrument types and 29 million symbols.
This data is used to identify rate patterns over time per source and
instrument type to characterize and categorize sources.

DEBS Grand Challenge 2022 Trading Data [GC22]. This data set
contains 289 million event notifications of the highest granularity
(tick data) from three sources covering the period of one week and
two instrument types (equities and indices). This data set is used
to verify our model. Available at [7].

——
R CFS
RSS

Low Coverage High

(Data sources, instrument types, symbols etc)

High

Granularity
(Resolution regarding
time, notifications etc)

[] Analysis
I Evaluation

Figure 1: Complementary data used for analysis (gray) and
evaluation (black); diameters indicate size of set (not in scale).

3.2 Data analysis

We analyzed the data in Sec. 3.1 to derive prominent characteristics.
The analysis has been verified by interviews with domain experts.

Exchange categorization. Exchanges are the sources of financial
data and different exchanges exhibit different behaviors in terms
of the data they produce. The first step of our analysis consists in
identifying classes of exchanges that present similar profiles in
terms of data generation. The rationale is that the class of exchange
may affect any subsequent analysis of data: by identifying classes of
exchanges with homogeneous behavior, we can analyze each class
in isolation and improve the accuracy of the results we derive.

To identify classes of exchanges, we adopt a clustering algorithm.
We observe that the main distinguishing factor that characterizes
exchanges is the distribution of instrument types for the events
they generate. Accordingly, we use the frequencies of occurrence of
events belonging to each instrument type as features. As the data sets
contain 14 instrument types, each exchange is identified by a point
in a 14-dimensional feature space, and the goal of the clustering
algorithm is to find groups of exchanges that are close to each other
in the feature space. We adopt a k-means clustering algorithm: the
algorithm takes in input a positive number k and returns (i) k points
in the feature space that identify the center of k groups (centroids);
(ii) association of each element in the data set (exchange in our case)
to one group. The algorithm is iterative: it starts from an initial set
of centroids and refines them at each iteration. As we do not know
the number of classes upfront, we apply the algorithm for different
values of k; for each value, we compute the quality of the solution

DEBS ’22, June 27-30, 2022, Copenhagen, Denmark

based on a measure of similarity of the elements within each cluster
(the sum of square distance between each element and the centroid
of its cluster); we select the smallest number of k after which the
quality of the solution does not improve any further. As the final
solution depends on the initial selection of centroids, for each value
of k we apply the algorithm 5 times starting from different centroids,
and we evaluate the quality as the average over the 5 executions.

As aresult, we identified 12 classes of exchanges: 3 of them only
produce instruments of one type; 4 of them produce 2 types of
instruments (one type accounts for over 90% of the events); 2 of
them produce 3 types of instruments (one type accounts for over
80% of the events); the remaining classes produce between 4 and
8 different types of instruments.

Distribution of symbols. Data in the financial market is highly
skewed. Certain symbols appear much more frequently than
others, for instance due to a very high number of daily transactions
involving a small number of large companies. Trying to identify
classes of symbols that present similar behaviors (as we did for
the exchanges) (i) is difficult, as individual symbols may change
their behavior over time in an unpredictable way due to external
conditions that are not captured in the data sets and hard to
identify; (ii) is error-prone, as a wrong classification may lead to
an imprecise characterization of the workload; (iii) may lead to an
overly complicated definition of the workload, which is not in line
with the principle of simplicity we are following in our work.

Accordingly, in our analysis we proceed as follows. (A) We com-
pute the distribution of symbols according to their frequency at
which they appear in the data sets. We consider the set of symbols
that appear in different instrument types as disjoint. (B) We observe
that the distribution can be well approximated by a Pareto distribution.
(C) Pursuing the idea of simplicity, we derive a coarse grained dis-
cretization of the distribution, identifying n classes of frequencies and
assuming that all symbols that belong to the same class appear with
the same frequency. Specifically, to build our model we considered
n = 4 classes of symbols, with each class accounting for 25% of input
events. The first class contains very few symbols that appear very
frequently, down to the last class that includes many symbols, each of
them appearing in only few events. As we will discuss in Sec. 3.3, the
above discretization enables the definition of a simple model that can
generate realistic workloads with low computational complexity.

Temporal distribution. The temporal distribution of events plays
a primary role in ESP systems and needs to be carefully modeled.
For instance, handling a sudden increase in the input rate of events
may be problematic for some systems and may lead to undesirable
consequences such as an increased response time. We analyze
temporal distribution by looking at two levels of granularity: at a
coarse granularity we consider the daily profile of exchanges, while
at a fine granularity we consider the timestamp distribution.

The daily profile looks at the average rate of data generated
by a given exchange for each minute within an entire day. All
the exchanges we analyzed present recurring temporal patterns:
(i) they only produce traffic during working hours; (ii) they present
two spikes at the beginning and at the end of the working day.
Based on this observation, we generated a generalized daily profile,
presented in Fig. 2, by aligning and averaging (with a granularity
of 10 minutes) the daily profiles of different exchanges.

Sladojevic et al.

2000,00

1600,00

1200,00

800,00

400,00

0,00 L}
00:00:00 06:00:00 12:00:00 18:00:00 00:00:00

Figure 2: Generalized daily profile.

Individual exchanges may differ from the generalized daily
profile with respect to three axis: (i) beginning of the working day
(e.g., due to different time zones); (ii) duration of the working day;
(iii) absolute rate. As we detail in Sec. 3.3, our model introduces
parameters to control the three axis by (1) shifting, (2) scaling
horizontally and (3) vertically the generalized daily profile.

The daily profile defines the average rate of data produced
by a given exchange with a granularity of 10 minutes, that is, it
captures rate fluctuations that occur daily. However, we observe
that the distribution of events also presents fluctuations at a much
smaller scale (millisecond) that affect the distribution of events.
We capture these fluctuations by studying the distribution of the
distance in time (timestamp difference) between two consecutive
events coming from the same exchange. Our analysis shows that
the distribution is very skewed and can be well approximated by
an exponential function with rate A = 1/y, where p is the average
data rate (as defined by the daily profile of the exchange).

Completeness. The quality of data can play an important role for
an ESP system, as it may affect the way in which individual events
are processed (or maybe discarded) [6]. Accordingly, we conduct
a detailed analysis for the completeness of event attributes as follow.
First, we split the data sets by exchange type, as we observed that
for any given exchange type some attributes are mandatory (always
present) and some attributes are not compatible (always absent).
Then, for any remaining attribute, we compute the frequency of
occurrence in a given exchange type. We use these simple statistics
in our model to determine the probability that a given attribute is
empty. As a final remark, we also studied the correlation of missing
values, to understand if there were pairs or sets of attributes having
a high probability of being all present or all absent. However, this
study did not bring conclusive results and we opted for treating
each attribute independently from the others.

3.3 Model definition

Our model directly derives from the analysis in Sec. 3.2 and produces

arealistic workload by simulating multiple sources (exchanges).
Let us start from the characterization of individual exchanges.

An exchange e can be fully specified through 5 parameters.

(1) Openingtimet?:the UTC time at which the working day starts for

e.Different exchanges opens at different times depending on their
time zone. This parameter is used to shift the daily profile curve.

Deriving a Realistic Workload Model to Simulate High-Volume Financial Data Feeds for Performance Benchmarking

(2) Day length fe: the length of the working day for e. This parameter
is used to scale the daily profile curve horizontally (shrink it for
shorter working days or expand it for longer working days).

(3) Maximum rate a,: the maximum input rate of events for e. This
is used to scale the daily profile curve vertically.

(4) Category c.: the category of e, among the 12 categories we
identifies with our cluster analysis. The category influences the
behavior of the exchange in terms of data generation.

(5) Symbols S,: the set of symbols produced by e. This parameter
allows the developers to control how the events produced by
different exchanges overlap in terms of symbols.

As discussed in Sec. 2.1, exchanges are organized into feeds
and a feed publishes events coming from one or more exchanges.
Our model lets users define multiple exchanges (compiling the 5
parameters above for each of them) and associate them to feeds.
Thus, we consider three additional parameters:

(6) Feeds F: set of feeds to be considered.

(7) Feed exchanges Ey: for each feed f € F, the set of exchanges
associated to that feed.

(8) Omission rate py: for each feed f € F, the probability that an
entire event coming from that feed is lost.

(9) Latency Ag: for each e € E¢ and for each symbol s € S, the
latency of communication for symbol s between the exchange
e and the feed f (mean and standard deviation). In other words,
the distance in time between the instant when the event is
generated (as defined by its timestamp) and the instant when
the event is appended to the feed. With this parameter, users can
introduce a degree of reordering between events of the same
symbol received by an ESP system.

Feed Compute event
next event

Y

Exchange Compute symbol

next event R \npu
Exchange »{ || Symbols — param (5)
Distribution of symbols
= next event
Exchange >

\submit Input
Daily profile — params (1) (2) (3)
Timestamp distribution

Compute timestamp

Submit event

Discard? Compute instrument type

Input Input
Omission rate — param (8) Exchange category — param (4)

Deliver event

Compute attributes

Input Input
Latency — param (9) Completeness of instrument type

E

Percentage of notifications

Figure 3: Workflow of the model

Starting from this small number of parameters, the model defines
the events to be produced following the workflow presented in
Fig. 3 and discussed below.

(A) At any given point in time of the simulation, the model

determines the average rate of each exchange e based on its
daily profile, based on the generalized daily profile and t2, £, ae.

DEBS ’22, June 27-30, 2022, Copenhagen, Denmark

(B) For a given exchange e, the model determines the symbol of
the next event using the list of symbols — parameter S, and
the distribution of symbols — organized into discrete classes
of frequencies, as discussed in Sec. 3.2.

(C) For a given exchange, the model determines the instrument type
of the next event by using the exchange category — parameter c,.

(D) For a given exchange e, the model determines the timestamp
of the next event using the distribution of time differences —
exponential distribution, as discussed in Sec. 3.2.

(E) The model determines if an event has missing attributes bases
on the completeness characteristics of its instrument type, as
discussed in Sec. 3.2.

(F) The model determines if an event has to be discarded based on
the omission rate of the feed f producing it — parameter p¢.

(G) The process is applied to each feed f € F and for each exchange
e € Eg. The model produces events for a given symbol s within
an exchange e in strict timestamp order, while events from
different symbols may be received out of order, depending on
the latency of communication — parameter A3.

4 EVALUATION

We evaluate the fit of our model qualitatively by comparing some
features of generated data with the data set Trading Data [7] that
has been published as part of the DEBS Grand Challenge 2022
(hereafter [GC22]). As outlined in Sec. 3.1, [GC22] complements the
combined data used in this work for analysis and model derivation.
Quantitative analysis of the generated workload and its impact on
state-of-the-art ESPs is ongoing research work. With respect to the
four aspects of our analysis discussed in Sec. 3.2, we focus on symbol
distribution and temporal distribution for this evaluation. We could
not replicate the study of exchange categorization due to the limited
number of exchanges available in [GC22] (only three). Same for the
study of completeness because the attributes contained in [GC22]
have been purged to a very small subset (only 39) of the 2,500+ at-
tributes available to us in [CFS]. Hence, we focus on comparing data
generated by our model with the [GC22] data set in regard to (i) daily
profile pattern, (ii) distribution per symbol, and (iii) orders of magni-
tude for update rates per exchange type as Frankfurt/ETR in [GC22]
resembles a small, Amsterdam/NL a medium, and Paris/FR a large
exchange regarding the overall traffic they contribute to the data set.

0,35
S 0,30 H Pareto
0,25 GC22

0,20

0,15

0,10

0,05
0,00 MUREEFUNRRLLLLLLLNNDS.

1 4 7 10 13 16 19 22 25 28 31 34 37 40
Symbols

Figure 4: Distribution of symbols: Pareto vs. [GC22]

First, we compute the distribution of symbols in [GC22]. Fig. 4
shows the distribution when splitting symbols into 40 bins based

DEBS ’22, June 27-30, 2022, Copenhagen, Denmark

50,00
45,00
40,00
35,00
30,00
25,00
20,00
\ ‘ 15,00
5,00 \ 10,00
5,00

0,00 &

00:00

25,00

—e—ETR —e—NL

x 10000
x 10000

20,00 Model ETR Model NL

15,00 [4
Mt 1

10,00

0,00 Cemmmmem

00:00 06:00 12:00 18:00 00:00 06:00

(a) Frankfurt/ETR exchange

v

Wi

R

12:00

(b) Amsterdam/NL exchange

Sladojevic et al.

70,00

——FR

Model FR]

50,00 ‘{'
v ‘ |
40,00
\n* '\"'h'“ ‘
30,00 p

60,00

x 10000

20,00 l'

10,00 F
G 000 A2

18:00 00:00 00:00 06:00 12:00 18:00 00:00

(c) Paris/FR exchange

Figure 5: Daily pattern: model vs. [GC22]

on the number of event notifications they generate. As Fig. 4 shows,
the first bin alone (1/40" of all symbols) already produces 35% of
all event notifications, and the second bin produces about 15% of all
event notifications. After that, half of the bins produce roughly the
same number of events (about 3%) and the remaining bins contribute
to the number of event notifications only marginally. Fig. 4 also
compares the distribution of symbols with a Pareto distribution
(shape set to 16), which is the one we build our model on. As Fig. 4
shows, the distribution approximates the trend in [GC22], but in
[GC22] intermediate bins (between 4 and 20) produce a larger and
more uniform number of event notifications. This confirms the
validity of splitting symbols into few classes and consider a uniform
distribution within each class, as our model suggests.

Second, we study the temporal distribution of event notifications
produced by the three exchanges in [GC22]. For each exchange,
[GC22] contains one week of data and in our analysis we consider
the average number of events produced in a given time window
over the 7 days of the week. Fig. 5 compares the daily pattern
produced by our workload generator with respect to real data
from Frankfurt/ETR - Fig. 5a, Amsterdam/NL - Fig. 5b, Paris/FR
- Fig. 5c. As different exchanges produce different volumes of
events, we scaled our model using parameter a, based on the
maximum rate observed in each exchange: we obtained agrr =128
for Frankfurt/ETR, anr = 264 for Amsterdam/NL, apg = 407 for
Paris/FR. A qualitative analysis shows a clear similarity between
the real and the modeled patterns. Despite the expected differences
across exchanges, our model mimic the expected daily patterns with
a simple approach that can be easily implemented at scale.

In summary, the initial assessment using the [GC22] data set
confirms our model’s capability to reproduce key characteristics
of market data feeds, such as the highly skewed distribution of
symbols and the variable generation rates over a day.

5 CONCLUSIONS

Performance benchmarks using configurable, reproducible, and scal-
able workloads are essential to properly assess and fine-tune modern
ESPs. This paper presented two novel contributions from an ongoing
project on the development of a benchmark specific to financial
market data processing: (i) a detailed statistical analysis of real-world
market data provided by aleading provider of financial data, and (ii) a
simple yet accurate workload model derived from this analysis. Our
model simulates high-volume workloads that reflect the specifics of

market data, and has been evaluated using the data set Trading Data
recently published as part of the DEBS 2022 Grand Challenge. We
are currently working on a reference implementation of the model
in our open-source benchmarking framework wrench [3]. Future
work will focus on fine-tuning the parameters presented here and
adding support for semantic dependencies between symbols.

ACKNOWLEDGMENTS

The authors would like to thank the three anonymous reviewers for
their valuable feedback on this work and Fredrik Koch of the Infront
group for his sponsorship.

REFERENCES

[1] M.IL Ali, F. Gao, and A. Mileo. 2015. CityBench: A Configurable Benchmark to
Evaluate RSP Engines Using Smart City Datasets. In ISWC’15. Springer.

A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvkina, M.
Stonebraker, and R. Tibbetts. 2004. Linear Road: A Stream Data Management
Benchmark (VLDB ’04). VLDB Endowment.

M. Coenen, C. Wagner, A. Echler, and S. Frischbier. 2019. Benchmarking Financial
Data Feed Systems. In DEBS’19. ACM.

S. Frischbier, M. Paic, A. Echler, and C. Roth. 2019. Daily load patterns of six global
exchanges. https://doi.org/10.5281/zenodo.6381970

S. Frischbier, M. Paic, A. Echler, and C. Roth. 2019. Managing the Complexity of
Processing Financial Data at Scale - An Experience Report. In CSDM’19. Springer.
S. Frischbier, P. Pietzuch, and A. Buchmann. 2014. Managing expectations:
Runtime negotiation of information quality requirements in event-based systems.
In ICSOC ’14. Springer. https://doi.org/10.1007/978-3-662-45391-9_14

S. Frischbier, J. Tahir, C. Doblander, A. Hormann, R. Mayer, and H.-A.
Jacobsen. 2022. DEBS 2022 Grand Challenge Data Set: Trading Data.
https://doi.org/10.5281/zenodo.6382482

J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and V. Markl. 2018.
Benchmarking Distributed Stream Data Processing Systems (ICDE ’18).

M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura. 2017. Sparkbench: a spark
benchmarking suite characterizing large-scale in-memory data analytics. Cluster
Computing 20,3 (2017).

M. R.N. Mendes, P. Bizarro, and P. Marques. 2013. Towards a Standard Event
Processing Benchmark. In ICPE ’13. ACM.

R. Nambiar, M. Poess, A. Masland, H. R. Taheri, M. Emmerton, F. Carman, and M.
Majdalany. 2013. TPC Benchmark Roadmap 2012. In Selected Topics in Performance
Evaluation and Benchmarking. Springer.

K. Sachs, S. Kouneyv, J. Bacon, and A. Buchmann. 2007. Workload Characterization
of the SPECjms2007 Benchmark. In Formal Methods and Stochastic Models for
Performance Evaluation. Springer.

A. Shukla, S. Chaturvedi, and Y. Simmhan. 2017. Riotbench: An IoT benchmark
for distributed stream processing systems. Concurrency and Computation: Practice
and Experience 29, 21 (2017).

T Treat. 2017. bench - A generic latency benchmarking library.
https://github.com/tylertreat/bench. [Online; accessed 2022-03-22].

L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang,
C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu. 2014. BigDataBench: A big data
benchmark suite from internet services (HPCA ’14).

(10]

(1]

(12]

[13

(14]

[15

https://doi.org/10.5281/zenodo.6381970
https://doi.org/10.1007/978-3-662-45391-9_14
https://doi.org/10.5281/zenodo.6382482
https://github.com/tylertreat/bench

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Market data processing in a nutshell
	2.2 Related work

	3 A model for financial data
	3.1 Data sets used for analysis
	3.2 Data analysis
	3.3 Model definition

	4 Evaluation
	5 Conclusions
	Acknowledgments
	References

