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ABSTRACT
We present a knowledge graph management system designed to
run on Edge computing devices that handles high-frequency data
streams. During the design phase, we took into account the inher-
ent limitations of the devices, i.e., limited computing power and
storage space, as well as the expectations of applications, e.g., low
latency, high throughput, and intelligent data management. This
results in a compact, decompression-free, in-memory, streaming-
enabled RDF store that supports continuous querying and some
forms of reasoning. The system addresses efficient query process-
ing of data continuously arriving at a fast pace and is well-adapted
to event-driven applications such as anomaly and risk detection.
We empirically emphasize its accuracy, robustness, latency, and
throughput properties on a real-world IoT setting originating from
the energy management domain.

CCS CONCEPTS
• Information systems→ Streammanagement; •Applied com-
puting → Event-driven architectures; • Computer systems
organization→ Distributed architectures.
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1 INTRODUCTION
In recent years, there has been a strong interest for Edge computing[1].
This distributed computing paradigm complements Cloud comput-
ing by bringing the processing, management and storage of large
data sets closer to where there are needed the most. The main bene-
fits of this approach are to reduce response times and save network
bandwidth by preventing data analysis from occurring in the cloud.
These analyses typically support event-driven applications that
include anomaly and risk detection in areas ranging from building,
factory or vehicle monitoring to financial fraud.

Potentially, smart Edge computing, i.e., involving reasoning ser-
vices, can (i) facilitate the configuration of Internet Of Things (IoT)
environments, (ii) deduce implicit consequences from the knowl-
edge explicitly represented, (iii) provide background information
and an explanation of inferences. To ensure such a behavior, a
Knowledge Graph (KG) management system is required on Edge
devices. Certain properties expected from such systems are to guar-
antee (i) a small memory footprint of the data management system
as well as of the data and knowledge processed, and (ii) efficient
query and inference processing.

Recently, we designed SuccinctEdge[17] which can be character-
ized as a federated event-based system (FEDS)[4] since it integrates
and queries data pushed from multiples sensors into a Succinct-
Edge client. Moreover, these clients push some data and metadata
to a SuccinctEdge server when anomalies have been detected. The
whole system can be defined as a compact, decompression-free,
self-index, in-memory database management system for the Re-
source Description Framework (RDF) graph data model. We have
met the aforementioned requirements through extensive use of suc-
cinct data structures (SDS) and specialized optimization algorithms.
In this paper, we present extensions that allow the processing of
unbounded data emitted from multiple sensors. By continuously
querying an RDF data stream, our system is able to support event-
driven applications requiring inferences.

To provide guarantees of low latency (the time between the
start and end of an event) and high throughput (the total amount
of work done in a given time), our extension relies on the open
source Eclipse Mosquitto system. This lightweight message broker
is suitable for Edge devices and offers a set of essential features
for a stream processing platform. We can hence concentrate on
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tasks such as query processing and optimization, supporting several
streaming models and window strategies and reasoning.

Concretely, our contributions consist of: (i) a solution to detect
risks and anomalies from temporal data via the interrogation of
unbounded RDF graphs, (ii) the support of different stream pro-
cessing models, i.e., true streaming and micro-batch, and window
strategies, i.e., tumbling and sliding, (iii) a rewrite of SuccinctEdge’s
query execution components: support for a continuous SPARQL
extension, a new inference-enabled query optimization approach
based on the distinction between static and dynamic portions of
continuous queries, and (iv) a thorough evaluation of the accuracy,
robustness, latency and throughput dimensions in a real-world
scenario that is used at our energy partner.

Organization: in the next section, we present some background
knowledge. In Section 3, we introduce a real-world motivating ex-
ample. Section 4, provides an overview of our Streaming Succinct-
Edge system. Section 5 presents some related work. We evaluate
our system in Section 6, provide some lessons learned in Section 7
and conclude the paper in Section 8.

2 BACKGROUND KNOWLEDGE
2.1 RDF - SPARQL
RDF corresponds to a data model taking the form of a labelled,
directed multi-graph. Assuming disjoint infinite sets I (IRI for Inter-
nationalized Resource Identifiers), B (blank nodes) and L (literals), a
triple (S,P,O) ∈ (I ∪ B) x I x (I ∪ B ∪ L) is called an RDF triple where
S, P and O respectively denote the subject, predicate and object of
that triple.

SPARQL is a query language for RDF data. The SPARQL syntax
follows the select-from-where approach of the SQL language. The
SELECT clause specifies the (distinguished) variables appearing in
the result set of the query. The WHERE contains a set of graph pat-
terns that is called a basic graph pattern (BGP). Intuitively, SPARQL
query processing amounts to returning the distinguished variable
bindings that match the BGP to a given RDF graph. SPARQL pro-
cessing is based on matching graph patterns. Additionally to sets I,
B and L, the signature of a triple pattern (TP) in SPARQL requires
V, an infinite set of variables. We can recursively define a SPARQL
graph pattern as follows: (i) a triple 𝑔𝑝 ∈ (I ∪ B ∪ V) x (I ∪ V) x (I ∪
V ∪ B ∪ L) is a SPARQL graph pattern, (ii) if 𝑔𝑝1 and 𝑔𝑝2 are graph
patterns, then (𝑔𝑝1 .𝑔𝑝2) represents a group of graph patterns that
must all match, (𝑔𝑝1 UNION 𝑔𝑝2), denoting pattern alternatives, are
graph patterns and (iii) if 𝑔𝑝 is a graph pattern and C is a built-in
condition then the expression (𝑔𝑝 FILTER C) is a graph pattern that
enables to restrict the solutions of a graph pattern match according
to the expression C.

A Knowledge Base (KB) consists of an ontology, aka termino-
logical box (TBox), and a fact base, aka assertional box (ABox).
The least expressive ontology language of the Semantic Web is
RDF Schema1 (RDFS). Its goal is to provide a mechanism allow-
ing to describe groups of related resources (concepts) and their
relationships (properties). RDFS entailment can be computed us-
ing a set of (14) rules. But practical inferences can be computed

1http://www.w3.org/TR/2014/REC-rdf-schema-20140225/Overview.html

with a subset of them. In this work, we consider the 𝜌df mini-
mal RDF deductive system which has been defined and theoreti-
cally investigated in [12]. In a nutshell, 𝜌𝑑 𝑓 considers inferences
using rdfs:subClassOf, rdfs:subPropertyOf, rdfs:range and
rdfs:domain properties. An RDF property is defined as a relation
between subject and object resources. RDFS allows to describe this
relations in terms of the classes of resources to which they apply
by specifying the class of the subject (i.e., the domain) and the
class of the object (i.e., the range) of the corresponding predicate.
The corresponding rdfs:range and rdfs:domain properties al-
low to state that respectively the subject and the object of a given
rdf:Property should be an instance of a given rdfs:Class. The
property rdfs:subClassOf is used to state that a given class (i.e.,
rdfs:Class) is a subclass of another class. Similarly, using the
property rdfs:subPropertyOf, one can state that any pair of re-
sources (i.e., subject and object) related by a given property is also
related by another property.

Other ontology languages, e.g., OWL2 (Web Ontology Language)
of the Semantic Web stack are more expressive than RDFS and
thus come at a higher computational cost for standard inference
services.

2.2 Succinct Data Structures
In Streaming SuccinctEdge, we are using 2 types of Succinct Data
Structures (SDS): BitMap (BM) and Wavelet Tree (WT)[13].

BM is the most basic type of SDS. It consists of a sequence of bits
with extra information to support the execution of SDS operations.
A WT uses 2 BMs at each level of its binary balanced tree. Both of
them can be queried with a set of 3 operations: 𝑅𝑎𝑛𝑘 , 𝑆𝑒𝑙𝑒𝑐𝑡 and
𝐴𝑐𝑐𝑒𝑠𝑠 . Given a sequence 𝑆 , the operation 𝑆.𝐴𝑐𝑐𝑒𝑠𝑠 (𝑖) (also denoted
as 𝑆 [𝑖]) refers to the (𝑖 + 1)𝑡ℎ element in 𝑆 . 𝑆.𝑅𝑎𝑛𝑘 (𝑖, 𝑐) returns the
number of occurrences of 𝑐 from 𝑆’s beginning at index 𝑖 . Finally,
𝑆.𝑆𝑒𝑙𝑒𝑐𝑡 (𝑖, 𝑐) returns the index of the 𝑖𝑡ℎ occurrence of element 𝑐
in 𝑆 . Figure 1a provides an example of theses operations executed
over a BM.

Figure 1: Wavelet Tree example with its dictionary

Example 1: Consider the 𝐴𝐵𝐹𝐸𝐶𝐵𝐶𝐶𝐴𝐷𝐸𝐹 string sequence,
where each letter is mapped with an integer identifier in an incre-
mental order,e.g., 𝐴 and 𝐵 are resp. assigned values 0 and 1 (see
dictionary in Figure 1b). Figure 1c displays the WT of this sequence
according to this encoding. A tree structure is constructed from
this sequence as follows: each level of this tree divides the sequence
2https://www.w3.org/TR/owl2-overview/
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of previous nodes into two sub-sequences by the corresponding
bit. For example, from root to the first level, 𝐴𝐵𝐹𝐸𝐶𝐵𝐶𝐶𝐴𝐷𝐸𝐹 is
divided into 𝐴𝐵𝐶𝐵𝐶𝐶𝐴𝐷 and 𝐹𝐸𝐸𝐹 by the first bit of each identi-
fier. This strategy is applied recursively until each leaf is computed.
Using the RRR index[15], the SDS operations are computed in O(1)
for BMs and O(log n) for WTs where n is the size of the vocabulary.

2.3 LiteMat
LiteMat is a semantic-aware encoding scheme that compresses RDF
data sets and supports reasoning services associated to the RDFS
ontology language. It focuses on the 𝜌df[11] subset of RDFS, i.e.,
inferences associated to constructors such as rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:domain, rdfs:range. To address in-
ferences drawn from these first two RDFS predicates, we attribute
numerical identifiers to ontology terms, i.e., concepts and predicates,
that are supporting the semantic.

The semantic encoding of concepts and predicates supports rea-
soning services usually required at query processing time. For in-
stance, consider a query asking for the pressure value of sensors
of type S1. This would be expressed as the following two triple
patterns: ?x pressureValue ?v. ?x type S1. In the case sensor
concept 𝑆1 has n sub-concepts, then a naive query reformulation
requires to run the union of n+1 queries. With LiteMat’s semantic-
aware encoding, we are able, using two bit-shift operations and
an addition, to compute the identifier interval, i.e., [lowerBound,
upperBound), of all direct and indirect sub-concepts of 𝑆1. And thus
we can compute this query with a simple reformulation: (i) replac-
ing the concept S1 with a new variable : ?x type ?newVar and (ii)
introducing a filter clause constraining values of this new variable:
FILTER (?newVar>=lowerBound && ?newVar<upperBound).

2.4 Eclipse Mosquitto
Eclipse Mosquitto[10] is a lightweight message broker that imple-
ments MQTT (Message Queuing Telemetry Transport), a publish-
subscribe message protocol that generally uses the Internet protocol
suite,i.e., TCP/IP. Mosquitto has been designed to run on devices
with limited resources such as sensors, i.e., handling over 1000
clients on less than 3MB of RAM. Therefore, it is particularly well
suited for Edge computing. In the context of our Streaming Suc-
cinctEdge platform, Mosquitto supports the data exchange between
SuccinctEdge’s server and client as well as between SuccinctEdge
client and sensors (see Figure 2).

3 MOTIVATING EXAMPLE
3.1 Data flow
Our running example is based on a frequent use case in sensor-based
anomaly detection. In fact, it corresponds to a real world scenario
encountered by our energy partner: ENGIE, a multinational com-
pany operating in fields such as energy transition, generation and
distribution.

The setting of this use case corresponds to buildings where
hundreds of sensors are installed and are continuously capturing
measures. Sensor data is continuously analyzed to detect anomalies
and/or identify risky situations, e.g., gas and water leaks, energy
over-consumption.

Figure 2 presents the typical data flow of this IoT setting. We
consider the installation of a new sensor in the building (step 1).
In step 2, the people responsible for this installation, noted the IoT
Persons, declare to the administrators of the platform the schema
associated with the measurements retrieved from this device as
well as certain metadata, e.g., the brand of the sensor, the location,
the date of the last calibration. Note that this approach also applies
when an existing sensor is replaced. Therefore, we consider that it is
not possible for a sensor to be changed without the administrators
being aware of it.

The Administrators then ask a team of domain experts to map
this schema, e.g., CSV, to a semantic representation, e.g., OWL. A
large set of ontologies are available to annotate the IoT and sen-
sor domains, e.g., Sensor, Observation, Sample, Actuator (SOSA3),
Quantities, Units, Dimensions, and Types (QUDT4) or Smart Appli-
cances Reference (SAREF5). The semantic representation of these
data is an incentive to use the RDF data model. At ENGIE, the use
of these ontologies simplified the task of describing, manipulating
and connecting sensors and actuators. Domain experts also define
relevant queries (using SPARQL) , i.e., those enabling anomaly and
risk detection (step 3).

Using LiteMat[6], administrators can encode ontologies required
by this new graph (step 4) and transform the SPARQL queries into
optimized queries expressed in terms of SDS operations (step 5).
These physical query plans are sent to the appropriate Succinct-
Edge client (step 6). These queries are continuously executed when
receiving messages from the sensors (step 7). These queries can
only be modified upon Administrators request, e.g., when the con-
nected sensor is changed. In case an anomaly is detected by a query,
a message is sent from the SuccinctEdge client to the Succinct-
Edge server with some context information such as device and
query identifiers, abnormal data and event time of the anomaly
(step 8). In order to perform several of these tasks, SuccinctEdge
maintains some metadata, e.g., query/sensor, client instance/sensor,
mosquitto/client instance associations.

3.2 Semantic integration
Figure 3 presents an extract of a graph processed by a Streaming
SuccinctEdge instance. It contains some measures related to the
distribution of some commodities, e.g., water, gas, in a building.
Given such a graph, our system executes queries that can detect
some anomaly patterns, e.g., distribution network leaks.

In our experimentation at ENGIE, we found out that several
types and brands of sensors are frequently being used to observe
similar measures, e.g., pressure, flow. These sensors may also pro-
duce measures expressed in different units, e.g., 𝐵𝑎𝑟 , 𝑃𝑎𝑠𝑐𝑎𝑙 , 𝑝𝑠𝑖 ,
𝑇𝑜𝑟𝑟 for pressure measures; 𝑓 𝑡3/𝑚𝑖𝑛, 𝑔𝑎𝑙/𝑚𝑖𝑛, 𝑚/𝑚𝑖𝑛, 𝑚3/ℎ for
volume per time unit. In this context, it is necessary to integrate all
retrieved information into a single information system.

The ability to associate KG concepts and properties to the mea-
sures produced by these sensors is the first step toward this semantic
integration. Moreover, domain experts generally define concepts of
observable properties, e.g., AtmosphericTemperature, which can be

3http://www.w3.org/TR/ns/sosa
4http://qudt.org/schema/qudt
5https://ontology.tno.nl/saref.ttl
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Figure 2: Data flow for setting a Streaming SuccinctEdge platform

organized into hierarchies and can hence be used for reasoning pur-
poses. RDFS inferences are efficiently processed in SuccinctEdge,
via query rewriting, thanks to our LiteMat encoding approach.

A second semantic integration step consists in making it easier to
write SPARQL queries by automatically transforming queries to the
characteristics of a given sensor, e.g., based on concept annotations
and units being used. To support these requirements, we encourage
domain experts to express queries in relatively high concept terms.
Expressing a query with abstract concepts, i.e., high in the concept
hierarchy, permits to write a single query that can tackle sensors
performing similar measures but annotated with different concepts
and measure units. Hence, domain experts do not have to worry
about the inferences which are handled automatically by the system.
This approach’s simplicity was expected at ENGIE for productivity
reasons. Indeed, it allows its sensor personnel to concentrate on
their tasks and not on adapting a given query to a potentially large
number of sensors in an industrial environment.

Let us consider two sensor platforms. The first station corre-
sponds to the one described in Figure 3 where the pressure is
typed as 𝑞𝑢𝑑𝑡 : 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑂𝑟𝑆𝑡𝑟𝑒𝑠𝑠𝑈𝑛𝑖𝑡 and is expressed in the Bar

unit. In the second one, a similar pressure measure is typed as
𝑞𝑢𝑑𝑡 : 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑈𝑛𝑖𝑡 and is expressed in the HectoPA unit. Since,
the QUDT ontology6 states that: 𝑞𝑢𝑑𝑡 : 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑂𝑟𝑆𝑡𝑟𝑒𝑠𝑠𝑈𝑛𝑖𝑡 ⊑
𝑞𝑢𝑑𝑡 : 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝑈𝑛𝑖𝑡 , a single SPARQL query (detailed in Section
4.2) can be written to address the specificity of each sensor at these
stations.

4 STREAMING SUCCINCTEDGE OVERVIEW
4.1 Architecture
SuccinctEdge adopts a self-index approach based on the PSO per-
mutation. This means that a single copy of RDF triples is stored
in the system. Given our PSO indexing approach, we distinguish
between datatype properties, i.e., where the object is a literal, and
object properties, i.e., where the object is not a literal. In most use
cases we have encountered, the relationships between instances in
the RDF graphs rarely change because they represent the connec-
tions between physical objects, e.g., platforms, sensors. We can thus
represent all triples containing an object property (except rdf:type

6https://qudt.org/
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Figure 3: Graph extract of our use-case

for which a special storage is proposed) with a combination of WTs
and BMs. Intuitively, each predicate, subject, object set is stored as
a WT (resp.𝑊𝑇𝑝 ,𝑊𝑇𝑠 and𝑊𝑇𝑜 ) and two BMs resp. connect the
𝑊𝑇𝑝 to𝑊𝑇𝑠 and𝑊𝑇𝑠 to𝑊𝑇𝑜 .

Meanwhile, the data generated by sensors, i.e., numerical mea-
sures, which are objects of some datatype properties, change con-
tinually. A high update rate is not adapted to a WT storage for the
two following reasons: (i) each object value would require a single
identifier but this is not reasonable since these values are mostly
numerical and thus possibly infinite, (ii) updating a WT can not be
performed efficiently.

Figure 4 shows the details of the data structures used for triples
containing a datatype property. Properties and subjects are stored
as in the object properties part, i.e., with 2 WTs and a BM. A BM
connects the subject WT to an object layer, denoted O. In this layer,
each object represents a dynamic data which is timestamped and
frequently appended. There, the system stores a pointer for each
object which is pointed to a queue-like structure. When new data
comes in, we push it to the front of the queue. These queue-like
structures have some auxiliary functions to optimize the aggrega-
tion operations (i.e., MIN, MAX, AVG, SUM, COUNT) present in a
query. The corresponding function is activated on demand from

the system, e.g., it may depend on the streaming semantic (see next
sub-section). When we execute a triple pattern (TP) with datatype
property, we search the index interval of objects using the WTs
and BMs of the first two layers, then for each object in this interval,
we take the value in its corresponding data queue and compute the
function indicated in the query.

Example 2: We consider the data transfer of 2 different sensors
(S1 and S2) is given in Figure 4. We assume that each sensor mea-
sures a single value, i.e., S1V and S2V. S1T (resp. S2T) represents the
timestamp received from S1 (resp. S2) and S1V (resp. S2V) refers to
its S1’s measure (resp. S2). Hence, SuccinctEdge has distributed a
queue-like structure for each data series.

Even though sensors can send messages with different frequen-
cies, SuccintEdge can still handle the situation thanks to a map
structure implementation to distribute each datatype object to a set
of its corresponding sensor. By using this approach, we easily keep
all the data sequences originating from one sensor in the same data
contiguous structure. Moreover, sliding and tumbling streaming
windows impose the maintenance of cursors on these structures.
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Figure 4: Data type property structurewith twoWTs and two
BMs

4.2 Continuous SPARQL extension
Several projects have extended the SPARQL query language to
support the continuous querying of RDF data streams. As a well-
established approach, the syntax and semantics of C-SPARQL [3]
has influenced our own SPARQL extension.

Compared to the C-SPARQL syntax, we are currently only sup-
porting logical windows, i.e., time-based, and our RANGE descrip-
tion block, specifying the length of the logical window, appears in
the SELECT clause.

In the context of our experiments at ENGIE, we have not encoun-
tered use cases where a physical window, i.e., based on counting
triples, is needed. Moreover, we have not yet experienced a situation
where named graphs are required. So, the FROM clause is at the
moment not supported in our SPARQL extension. Nevertheless, we
are aiming to address this limitation in the next version of Succinct-
Edge. In addition to tumbling windows, we also support sliding
windows, see Section 4.4, using the STEP keyword to specify the
frequency of window sliding. We can also associate an aggregation
operation to each query variable. Another extension we have made
is that for each datatype variable, we can indicate an aggregation
function we want to compute, e.g., MAX, MIN and AVG.

The query presented in Figure 5 detects anomalies related to an
incorrect pressure value (either expressed in Bar or HectoPascal) for
sensors at stations 1 and 2. We can see that in the RANGE clause a
tumbling window of 5 seconds is required. Moreover, the numerical
variable ?v1 is followed by a [MAX] instruction which indicates
that for each binding of ?v1 in the result set, we take the maximum
in the data window. The FILTER clause detects anomalies, the BIND
clause performs some data transformations (between the Bar and
hectoPascal measure units).

SELECT ?x ?s ?ts ?newV[Max]
[RANGE 5000ms TUMBLING] WHERE {
?x rdf:type sosa:Platform; sosa:hosts ?s.
?s rdf:type sosa:Sensor; sosa:observes ?o.
?o rdf:type sosa:Observation;
sosa:resultTime ?ts; sosa:hasResult ?y.
?y rdf:type sosa:Result; qudt:unit ?u,
qudt:numericValue ?v.
?u rdf:type qudt:PressureOrStressUnit.
FILTER (?newV<3.00 || ?newV>4.50)
BIND(if(regex(str(?u),
"http://qudt.org/vocab/unit/BAR"),?v,
if(regex(str(?u),
"http://qudt.org/vocab/unit/HectoPA"),
?v/1000,0)) as ?newV)}

Figure 5: Physical pressure anomaly detection query

Such queries are continuously executed on some SuccinctEdge
clients. Whenever this query returns a result, its distinguished
variables, i.e., variable binding of the SELECT clause, are sent to a
SuccinctEdge server to alert on a potential anomaly. Note that the
message to the server is also enriched with client metadata such as
SuccinctEdge client and query identifications.

4.3 Query processing
The query processor described in [17] has been extended with a
decomposition of a query’s basic graph pattern (BGP). The moti-
vation for this new query processor is two-fold and based on an
observation of real-world IoT settings.

First, continuous queries analyzing streaming data are (i) gen-
erally highly selective, i.e., returning rather small answer sets of
around tens of tuples, and (ii) retrieve both static, e.g., sensor and
entity identifiers, and dynamic, e.g., analysis of recent measures
and their timestamps, information. Moreover, a sensor can produce
a set of measures corresponding to different types of information,
e.g., pressure, flow, pH, etc. But most of the time, only one value is
produced per type of information in a given sensor output. Note
that this has also been observed in other industrial contexts, for
example the Waves project [7].

Second, the semantic graph, i.e., its TBox, associated to a sensor
rarely changes except if the sensor is replaced. As stated in Section
3.1, the replacement of a sensor in our IoT ecosystem is necessarily
notified to the team of administrators of the overall platform. Then,
this forces to re-execute steps 3 to 6 of Figure 2 and thus prevents
our semantic context to be become incoherent with our IoT setting.

Given these two observations, our new query processor distin-
guishes between a static and a dynamic subset of the BGP. Intu-
itively, when a sensor produces its first measures, the complete
BGP of the continuous query is executed and the bindings of the
distinguished variables of the static part of the BGP are cached by
SuccinctEdge. Note that this query execution may involve some
form of (RDFS) reasoning which are handled by LiteMat’s rewriting
facility. This rewriting mainly tackles the concept and property
hierarchy inferences.
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Figure 6: Static and dynamic query processing

Then, for successive measures produced by this same sensor,
only the dynamic portion of the BGP needs to be executed and
integrated in the query result set (see Figure 6). The dynamic dis-
tinguished variables correspond to objects of datatype properties
and thus do not influence a query’s graph pattern matching since
they correspond to graph leaves. The execution of this dynamic
BGP subset may require the computation of aggregation functions
and some data transformation, e.g., transform a pressure from Bar
to Pascal.

The main design principle of our query processing component
is to take advantage of this aspect and to compute a physical plan
only once for a given query. This drastically improves query ex-
ecution since in a continuous query processing setting, a query
may be computed an undefined number of times. This approach
is reminiscent to a parameterized query, 𝑎𝑘𝑎 prepared statement,
where a query is pre-compiled and only needs some parameters to
complete its execution. In our streaming context, the parameters
correspond to the dynamic part of the BGP, i.e., the objects asso-
ciated to datatype properties (including timestamps or measures)
or the result of applying an aggregation function over them. Since
the static subset of the BGP is cached to optimize it’s execution, we
need to reassemble the two parts when an anomaly is found before
its reporting. This is performed by searching through a series of
hash map data structures where the key corresponds to a query
and sensor identification pair.

In the query of Figure 5, the cached static part corresponds to
the ?x and ?s variables, respectively the platform and sensor URIs,
while the dynamic part corresponds to the ?ts and ?v1[MAX] vari-
ables, respectively the event timestamp and maximum pressure
value of a pressure measure whose maximum value exceeds a cer-
tain threshold.

We have seen in Figure 2 that the computation of the physical
plan is performed at a SuccinctEdge server which has generally
more resources, in terms of CPU and memory, than an Edge de-
vice where a SuccinctEdge client is running, e.g., a Raspberry Pi.
SuccinctEdge’s query optimizer mixes heuristics with a cost-based
approach. The statistics of the latter are stored in the dictionaries

Figure 7: Supported exchange modes

of LiteMat which remain on the machine running the SuccinctEdge
server. The remaining of the query evaluation is performed on a
SuccinctEdge client.

4.4 Data stream exchange modes
Streaming SuccinctEdge supports two data stream exchange modes.
In Figure 7, data events are represented as shapes. In the true stream-
ing mode, each sensor is immediately sent to its SuccinctEdge client,
via Mosquitto. The main advantage here is to limit data latency.
But, it comes with low data throughput and high network cost due
to frequent data exchange between the sensor and Mosquitto.

In the micro-batch mode, the sensor retains a certain amount
of events, typically corresponding to the length of the query tem-
poral window. Once the boundary of this window is attained, the
complete set of data is sent to the SuccinctEdge client, also via
Mosquitto. This mode limits the number of data exchanged over
the network but it increases data latency.

These two modes can run under the sliding and tumbling win-
dow strategies which are both supported by SuccinctEdge. Both
of these window strategies have a fixed duration and a slide in-
terval. In the case of tumbling widows, the slide interval is equal
to the fixed duration while in sliding windows the slide interval
is different to the fixed duration. When the slide interval is infe-
rior to the fixed duration, data contained in one window has some
overlap with the previous window. SuccinctEdge provides some
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optimizations to intelligently manage this overlap. In the context of
our experimentation at ENGIE, we have not encountered situation
where having a slide interval superior to the fixed duration was
relevant. In fact this last situation implies that some sensor data
are not being processed.

5 RELATEDWORK
RDF4Led[16] is an RDF database system that has been specifically
designed for Edge computing. It adopts a data persistence approach,
i.e., all the data are stored on a SD card. This is partially motivated
by a query execution component based on multiple indexes. Apart
from being less efficient in terms of query execution and memory
footprint compared to SuccinctEdge (see [17] for details), RDF4Led
does not support reasoning services and certain SPARQL clauses
that would enable an efficient query rewriting, e.g., UNION clause.
Additionally, RDF4Led is not supplied with stream processing capa-
bilities. It is thus not able to execute queries over a set of incoming
RDF graphs.

Fed4Edge [14] is a decentralized version of the CQELS engine
that benefits from the work conducted on RDF4Led. It adopts the
CQELS-QL [8] continuous query language based on SPARQL, while
we are using C-SPARQL. Nevertheless, in terms of query process-
ing and streaming features, both systems are quite comparable.
Currently, Fed4Edge concentrates on SPARQL query federation [2]
while Streaming SuccinctEdge has so far focused on query optimiza-
tion and reasoning. Nevertheless, as a FEDS system, SuccinctEdge
is also able to integrate and query data emitted by different sensors.

WaterFowl[5] is an RDF store based on SDS that is capable of
performing RDFS reasoning services. It can hence provide useful
services at the Edge of computing network. Nevertheless, Water-
Fowl lacks support for stream processing, misses the object stor-
age design and the query processing optimization of Streaming
SuccinctEdge. Finally, WaterFowl is not equipped with streaming
functionalities, e.g., continuous SPARQL querying.

Existing centralized RDF Stream Processing systems like C-
SPARQL [3] and CQELS [9] have been around for some time. Each
engine proposes its own continuous query language extension (gen-
erally based on the SPARQL syntax) to query time-annotated triples.
So, they have influenced our own extension of SPARQL to continu-
ously process queries. Though, none of these systems have been
designed to run on an Edge computing device.

6 EVALUATION
In this section, we evaluate our Streaming SuccinctEdge system
along the following dimensions: accuracy, robustness, scalability,
query processing performance, latency and throughput. This evalua-
tion is performed over different settings (tumbling as well as sliding
windows, anomaly scenarios) in the context of both synthetic data
and a real-life use case at one of ENGIE’s building.

6.1 Experimental setting
The context of this evaluation is anchored in our running example
(Section 3.1) where real-life measures are analyzed in a building of
our research pattern. For confidentiality reasons, we can not detail
the complete building setting. Nevertheless, we can state that each
floor of this four storey building is equipped with a SuccinctEdge

client connected to eight sensors. These sensors can capture differ-
ent measures, e.g., room temperature, physical pressure. The set of
sensors was heterogeneous at the time of the experimentation, i.e.,
some sensors were emitting pressures in the Bar unit while other
ones were submitting values in HectoPascal. A Single SuccinctEdge
server is receiving all messages from the four SuccinctEdge clients.

Since, we could not force anomalies in this real-world context,
it was mainly used to assess the robustness of our streaming Suc-
cinctEdge prototype. Concerning accuracy, query execution per-
formance, latency and throughput, we needed to control the oc-
currence of anomalies. For this reason, we also processed some
synthetic data characterizing different forms of anomalies.

The devices running SuccinctEdge clients are Raspberry Pi 3B+,
i.e., equipped with a Cortex-A53 (ARMv7l) 32-bit SoC 1.4GHz CPU
and 1GB LPDDR2 SDRAM. SuccinctEdge is implemented in C++
(version 14) and uses the SDS-lite library7. Eclipse Mosquitto (ver-
sion 2.0) and SuccinctEdge server run using a JDK (version 8). The
server is also using the Eclipse Paho java library 8 (an MQTT client
library). Data is transferred using MQTT which is a publish / sub-
scribe protocol based on TCP/IP. In every scenario examples, we
were using a Wi-Fi network. Installation details can be found on
github9.

In our use case, normal measures belong to the [4,5) interval
(in Bar) . A large set of evaluated dimensions are experimented
over 5 scenarios which are presented in Figure 8. They differ in the
occurrence frequency of anomalies. Intuitively, there is no anomaly
in Scenario 0 since all pressure values are in the [4,5) interval. Few
anomalies are regularly occurring in Scenario 1, series of anomalies
are followed by correct measures in Scenario 2. In scenarios 3 and
4, measures are drifting to a continuous anomaly states (complete
pressure loss in Scenario 4).

6.2 System robustness, accuracy and client
scalability

Considering robustness, we have conducted our tests over the build-
ing setting previously described. This evaluation was conducted
for a week without any failure from our SuccinctEdge platform, i.e.,
client, server and mosquitto instances.

During that week, we witnessed five anomalies. We double
checked the data retrieved for that week with domain experts. They
confirmed that only five anomalies occurred during that period. In
terms accuracy, i.e., whether the system detects all anomalies that
were occurring during our experimentation and whether it does not
detect false anomalies, SuccinctEdge identified the five anomalies
and only those anomalies. In fact, as long as the anomaly detection
query is correct, there is no reason for our system to detect a false
anomaly or to miss one.

Of course, an incorrect calibration of a sensor can falsify our
anomaly detection, but we consider that this is not the responsibility
of the SuccinctEdge system. We are planning to enrich the func-
tionality of our SuccinctEdge server to analyze historical measures
in order to identify calibration issues following data drifting.

7https://github.com/simongog/sdsl-lite
8https://www.eclipse.org/paho/index.php?page=clients/java/index.php
9https://github.com/SuccinctEdge/SuccinctEdgePublic
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Figure 8: Experimentation scenarios on pressure measures

Another problematic situation occurs if the sensor is not able
to send measures to Mosquitto or if the Mosquitto instance be-
tween a sensor and a SuccinctEdge client is down. We are currently
implementing fault tolerance in SuccinctEdge to at least identify
these situations. There already exists a heartbeat solution in MQTT
which allows to know if the client or the server has lost connection
to the Mosquitto Broker. However it does not allows us to monitor
the status of our clients and servers.

We have evaluated our system with synthetic data to make sure
that SuccinctEdge detects different anomaly patterns, i.e., the ones
from our 5 scenarios presented in Figure 8. We ran different window
strategies (tumbling and sliding windows), stream communication
modes (true streaming and micro-batch) and windows from 1 to
60 seconds. In all cases, we detected all anomalies and only real
anomalies.

The scenarios have also been tested over a setting implying sev-
eral sensors communicating with a single Streaming SuccinctEdge
client, i.e., up to 40, and with different frequencies, i.e., with two
sets of 20 sensors sending messages respectively every 200 and
300ms. The same 100% correctness has been observed. Finally, we
evaluated a 40 sensors platform under sliding windows (from 5 sec
to 5 min steps), true streaming (5 min to 1 hour) for over 3 days
with no failure and the same accuracy.

6.3 Throughput and network usage
We begin by evaluating, on synthetic data, the impact of data ex-
changes over the network in an experimentation spanning over 24
hours in relatively extreme cases: an anomaly per half hour (Table
1) and an anomaly every 2 hours (Table 2).

While sending a Mosquitto packet, we only consider the size of
the header and the payload size. The payload size is a multiple of 16
bytes (8 bytes for the value and 8 for the timestamp). We compare
different modes of SuccinctEdge: true streaming and micro-batch
(henceforth batch) using anomaly detection for each mode. Some

anomaly detections in SuccinctEdge are implemented using the
FILTER clause of SPARQL, hence it can be disabled if there is no
FILTER in the query. Then all the sensors measures are sent directly
to a SuccinctEdge server.

When in batch mode, SuccinctEdge only sends the relevant data
once to the server for a given time. When the anomaly detection
mode is enabled, the client only sends backmeasurements identified
as anomalies by the query. We try multiple batch sizes: sending
batches every hour or every 2 hours. Each batch correspond to a
single Mosquitto packet assuming the payload size is below 256MB.
Sensors are also producing one measurement per second.

In Tables 1 and 2, we see the network load to transfer 24 hour
sensor payload from clients to server using different modes. In
Table 1, we detect one anomaly per half hour, while in Table 2, we
have one anomaly every 2 hours.

Obviously, we get a higher throughput when data is transferred
as a batch and when we have more than one anomaly in the time
frame of this batch. The streaming mode is a little less efficient,
however it allows to get the data instantaneously.

When examining the latency and throughput properties, we
do not consider the query execution that retrieves and caches the
static part of the query as this is amortized by our query processing
approach. Instead, we only consider the impact of receiving suc-
cessive measurements, i.e., the computation of aggregate functions,
the detection of anomalies and the integration of the dynamic and
static parts of the query.

6.4 SuccinctEdge client query run time
In this section, we are evaluating the impact of adding many sensors
on a single SuccinctEdge client. Each sensor is sending 100measures
every second to the client, the evaluation has been conducted over
a range of 1 to 40 sensors. Figure 9 highlights that for 100 measures
per second, a SuccinctEdge client is able to handle up to 10 sensors
without delay in it’s query processing. It also shows that it could
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Mode Batch size Data size Mode Batch size Data size
Batch 1 hour 1.38MB Batch 2 hours 1.38MB

Batch + detection 1 hour 240B Batch + detection 2 hours 216B
Streaming - 1.46MB Streaming - 1.46MB

Streaming + detection - 288B Streaming + detection - 288B
Table 1: Network usage for 1 sensor, having 1 anomaly per half hour (detection means that we are sending the query result set
to the SuccinctEdge server)

Mode Batch size Data size Mode Batch size Data size
Batch 1 hour 1.38MB Batch 2 hours 1.38MB

Batch + detection 1 hour 216B Batch + detection 2 hours 216B
Streaming - 1.46MB Streaming - 1.46MB

Streaming + detection - 216B Streaming + detection - 216B
Table 2: Network usage for 1 sensor, having 1 anomaly per 2 hours (detection means that we are sending the query result set
to the SuccinctEdge server)

Figure 9: Average query run time (dynamic portion) in true
streaming for a client over 1 to 40 sensors sending 100 mea-
sures per second

handle up to 40 sensors if they were only sending 10 measures
per second. Therefore, for a setting where each sensor sends a
measure every 10ms, a new SuccinctEdge client is needed every
10 or so sensors. Considering the cost of a Raspberry Pi, this is
not a limitation of our overall streaming solution. Moreover, in
the context of industrial anomaly detection expected at companies
like ENGIE, a measure frequency in the range of seconds is more
realistic than in milliseconds.

These results are only possible due to the optimization of BGP
processing which is performed in two steps. The results in Figure 9
represent the execution time of the dynamic subset of the BGPwhile
the execution time of the static subset is shown in Table 3, varying
based on the number of triple patterns contained in the query BGP.
We can see that the dynamic portion of the query processing (in
ms) dominates the static one (sub ms).

6.5 SuccinctEdge server robustness and latency
In this section, we are evaluating the impact of adding many clients
on a single SuccinctEdge server. As we didn’t have enough Rasp-
berry Pis for this synthetic data-based experimentation, we had to
create a docker10 image of the SuccinctEdge client to run it in multi-
ple containers to stress test the SuccinctEdge server. In this scenario,
each client has 5 sensors, sending data every second. These values
are always considered as anomaly and are sent to the server.

We measure the latency for a SuccinctEdge client-server round-
trip, having the server returning an acknowledgement to the client
for each value received. Latency is increasing linearly when adding
client to a single server as we can see in figure 10. In this particular
experimentation setting, beyond 10 clients, the server is too slow to
process data in time, so the latency is increasing over time. Note that
this experimentation context is rather extreme since it considers
that all data received by a client is an anomaly. Hence, in a real
setting, it is best to question the domain experts for average and
worst case anomaly frequencies in order to define the number
of clients per server. Note that in our ENGIE building setting, a
SuccinctEdge server was connected to four clients.

Finally, in terms of latency measurement, we consider that the
dockerization also has a non negligible negative impact.

7 LESSONS LEARNED
Running our experimentation on a real-life anomaly detection -
driven use case helped us to confirm several accepted ideas. First,
the latency imposed by a micro-batch solution is sufficient in most
cases. In fact, the lower latency provided by a streaming approach
is not really expected by the ENGIE staff: gaining few seconds
is not that important compared to the time required by a human
intervention to fix a problem, e.g., fixing a leak in a distribution
network.

The efficient setting of the number of sensors connected to a
single client and of the number of clients connected to a single

10https://www.docker.com/
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Number of triple patterns 5 8 10 15
Time (ms) 0.215 0.312 0.414 0.632

Table 3: Time used to process the static part of the query for different number of triple patterns

Figure 10: SuccinctEdge client-server average round-trip la-
tency for client number ranging from 1 to 10

server require the knowledge of domain experts. Through our ex-
perimentation, we already discovered that up to 40 sensors can be
connected to a single SuccinctEdge client and that in extreme cases,
up to 10 clients can be connected to a single server. Note that this is
more than what an energy actor like ENGIE is currently expecting.

Additionally over 24 hours of measurement, our system find
many similar values in our micro-batches, this is not very impor-
tant when sending the data in true streaming mode but when we
accumulate this data in micro-batches it means that it can be com-
pressed efficiently to allow for persistence of the data even with the
limited hard drive capacity of edge devices. This could be achieved
in future works by the integration of Apache Parquet11, a colum-
nar storage format focusing on saving storage space, in Streaming
SuccinctEdge.

We also got the confirmation that most queries submitted in
an anomaly detection context are quite selective and the answer
set of low cardinalities. At ENGIE, we are searching for use cases
requiring queries with a lower selectivity.

Finally, we got the confirmation that timed-based windows (as
opposed to counting or session windows) are more relevant in
risk/anomaly detection. Additionally, we have yet to find a scenario
where sliding windows would make more sense than tumbling
windows when running on an Edge device.

8 CONCLUSION AND FUTUREWORK
In this paper, we have presented an original attempt to process
RDF stream at the edge of a computing infrastructure. The main
characteristics of our system are compactness and the ability to infer
implicit consequences on-the-fly. Our system, denoted Streaming
SuccinctEdge, demonstrates relevant properties, e.g., low latency
and high throughput, expected in a Big Data context where data are
produced at a high velocity. A thorough experimentation over the
11https://parquet.apache.org/

most frequently used streaming models (true streaming and micro-
batch) and window strategies (sliding and tumbling) emphasized
the accuracy, robustness and scalability of the system. In the near
future, Streaming SuccinctEdge will execute in several buildings
at our energy partner. Moreover, communication and cooperation
across SuccinctEdge clients will be integrated.
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