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ABSTRACT
Modern applications handle increasingly larger volumes of data,
generated at an unprecedented and constantly growing rate. They
introduce challenges that are radically transforming the research
fields that gravitate around datamanagement and processing, result-
ing in a blooming of distributed data-intensive systems. Each such
system comes with its specific assumptions, data and processing
model, design choices, implementation strategies, and guarantees.
Yet, the problems data-intensive systems face and the solutions they
propose are frequently overlapping.

This tutorial presents a unifying model for data-intensive sys-
tems that dissects them into core building blocks, enabling a precise
and unambiguous description and a detailed comparison. From the
model, we derive a list of classification criteria and we use them
to build a taxonomy of state-of-the-art systems. The tutorial offers
a global view of the vast research field of data-intensive systems,
highlighting interesting observations on the current state of things,
and suggesting promising research directions.
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1 INTRODUCTION
Data is a precious resource in today’s society as it guides decision-
making and affects many aspects of our everyday life. Software
applications increasingly become data-intensive [12]: they receive
large volumes of data continuously produced by people, IoT devices,
and other software systems. They need to store data, analyze and
integrate it, serve it to a multitude of users, and take automated
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decisions. Data characteristics such as its scale, the frequency at
which it is produced, and the inherent distribution of the actors that
generate and consume it make the development of data-intensive
applications challenging. As a consequence, the last two decades
have seen a blooming of distributed platforms that aim to simplify
the development and operation of data-intensive applications to
make them more efficient and cost-effective. These systems origi-
nate from research and development efforts in various communities,
in particular those working on database and distributed systems.

The design of modern distributed databases has been widely
affected by mutating workloads, requirements, and operational
conditions, including the need to handle unstructured and hetero-
geneous data, the increased number of concurrent users, their geo-
graphical distribution, and the increased availability and reduced
costs of main memory and parallel hardware [21]. This led to the
development of new classes of databases, some of them providing
simple and flexible data models and trading consistency guarantees
and strong (transactional) semantics for horizontal scalability [8],
others introducing new design and implementation strategies that
better adapt to modern compute infrastructures [20].

In parallel, MapReduce [9] pioneered a whole new class of sys-
tems for processing static and streaming data at scale on a cluster
of machines [6, 25]. These systems allow developers to focus on the
logic of their processing tasks and delegate (at least in part) distri-
bution, synchronization, scheduling, and fault tolerance concerns
to the system run time.

More in general, the requirements of data-intensive applications
are continuously pushing the limit of technology and driving the
exploration and exploitation of new approaches that go beyond
traditional categories. For instance, many data processing platforms
implement libraries to process relational data, thus proposing them-
selves as suitable engines to execute complex relational queries
and making the distinction with database technologies more blurry.
Data stores such as VoltDB [22] and S-Store [7] exploit user-guided
data partitioning to avoid blocking coordination and to support
stream processing features within a relational database core. Queu-
ing services such as Kafka [13] offer persistency and provide li-
braries with processing and querying abstractions [5].

In summary, a multitude of distributed data-intensive systems
proliferated over the years. Each builds on different assumptions,
for instance regarding user interaction and execution environment;
each adopts different design and implementation strategies, for in-
stancewith respect to synchronization and coordination; each offers
different guarantees, for instance in terms of processing semantics,
data consistency, and fault tolerance. Yet, once we look beyond
system-specific details, we can observe that recurring problems and
solutions.

Moving from the above motivations, we recently designed a
unifying model for data-intensive systems that integrates all key
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assumptions, design choices, implementation strategies, and guar-
antees into a coherent view [16]. The model dissects data-intensive
systems into a collection of abstract components that cooperate
to offer the system functionalities. It precisely defines each com-
ponent in a system-independent and unbiased way. In doing so, it
promotes the understanding of the possible strategies for develop-
ing data-intensive systems and the consequences they bring. From
the model, we derived a list of classification criteria that we used to
precisely describe tens of state-of-the-art data-intensive systems,
organizing them into a taxonomy.

In the tutorial, we first present our model and the classification
criteria deriving from it (see Sec. 2). Then, we overview our taxon-
omy of systems (see Sec. 3), highlighting the key common features
of each class, and the most notable exceptions in individual systems.
In doing so, we guide the attendees through a precise global view
of the field of data-intensive systems, their key concerns, recurring
strategies of design and implementation, and open problems. Our
study of data-intensive systems is the starting point to reflect on
the current state of the field and to discuss promising research
directions (see Sec. 4).

2 A UNIFYING MODEL FOR DATA-INTENSIVE
SYSTEMS

We propose a unifying model that dissects the core aspects of data-
intensive systems along multiple dimensions. For each dimension,
we extract a list of classification criteria that capture the alternative
design and implementation choices we found in existing systems.
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Figure 1: Functional model of a data-intensive system

Functional model. We start from a functional model that intro-
duces the main components that build and interact with a data-
intensive system (see Fig. 1). The data-intensive system runs onto
a distributed computing infrastructure consisting of different nodes,
each hosting one or more worker processes that implement process-
ing and storage functionalities (processing slots and state stores in
Fig. 1). The model defines how external clients can interact with
the system by defining driver programs, which offload jobs onto the
distributed computing infrastructure. Jobs are split into elementary
tasks that run within nodes, access their state, and communicate
and coordinate among each other by exchanging data over a data
bus. Jobs may additionally receive data from external sources and
submit results to sinks.

Our functional model captures the presence or absence of these
virtual components, their possible interactions, and the strategies
for their deployment.

Jobs. We model how different systems define, compile, deploy,
and execute jobs. In terms of definition, we capture the key char-
acteristics of the programming abstractions and domain-specific
languages that data-intensive systems provide: for instance, this
includes the programming paradigm (imperative or declarative),
the support for data-dependent control flow and for iterations, if
jobs are one-shot or continuous, that is, if they run only once and
terminate (e.g., a database query) or if they are deployed within
the system and get continuously activated by the arrival of new
data (e.g., continuous jobs in stream processing, view maintenance
procedures in databases).

In terms of compilation, deployment, and execution, we capture
when jobs are compiled, what information is used to optimize the
compilation, what are the units of deployment, when and how are
deployment decisions taken, how are the resources provided by the
computing infrastructure managed.

Data management. Data represents immutable information that
tasks exchange to fulfill the job they are part of. We model intrinsic
characteristics of data elements, such as their format, structure (if
any) and the presence of temporal metadata. We also model charac-
teristics of the communication channel used to deliver data (which
we denote the data bus): if it is persistent or ephemeral, partitioned,
replicated, directed, unicast or multicast, and the interaction model
it induces.

State management. State represents mutable information that
tasks can read and modify as part of their execution. As for data,
we model characteristics of individual state elements, such as their
structure and the way they are physically stored. We further model
their visibility (local to a single task or global), the use of state
partitioning, and the details about state replication: its goal, imple-
mentation strategies, and guarantees in terms of replica consistency.

Tasks grouping. Several systems offer primitives to identify groups
of tasks and provide additional guarantees for such groups: group
atomicity and group isolation. The former ensures no partial failures
for a group of tasks: they either all fail or all complete successfully.
The latter limits the ways in which running tasks can interact and
interleave with each other. In database systems, these properties
are considered part of transactional management, as transactional
semantics deals with both atomicity and isolation.

Our model captures the presence of task grouping guarantees,
the implementation strategies used to enforce them, and the as-
sumptions on which they build.

Delivery and order. Delivery and order model how the results of
jobs execution in terms of output and state changes become visible
to external actors, such as clients and sinks. Delivery focuses on
individual jobs invocations and studies which guarantees a system
provides on their execution in the presence of failures, and under
which assumptions. Order, instead, focuses on multiple jobs and
defines the order at which their effects become visible.

Fault tolerance. Fault tolerance is the ability to recover from a
software of hardware failure. We model fault tolerance in terms of
its scope (e.g., recover state or recover the intermediate results of
a long-running computation), the assumptions on which it builds,
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the guarantees it provides (e.g., recovery makes a failure unno-
ticeable for an external observer, and the algorithms used for its
implementation.

Dynamic reconfiguration. With dynamic reconfigurationwemodel
algorithms and strategies that data-intensive systems may enact
to adapt to changes in the environment in which they operate. For
instance, some systems are capable of automatically scale up (or
scale down) if the load suddenly increases (or decreases) to optimize
the use of resources.

3 SURVEY OF SYSTEMS
In the tutorial, we use the model in Sec. 2 to survey and analyze
many state-of-the-art data-intensive systems. Based on the classifi-
cation criteria we derived from the model, we created a taxonomy of
systems, as shown in Fig. 2. The tutorial will follow such taxonomy
and organize the presentation in a hierarchical way.

At a first level, we distinguish between data management sys-
tems, data processing systems, and other systems that do not clearly
fall into any of the two categories.

Data management systems offer the abstraction of a mutable
state store that many jobs can access simultaneously to query, re-
trieve, insert, and modify elements. They mostly target lightweight
jobs, which do not involve computationally expensive data transfor-
mations and are short-lived. Conversely, data processing systems
perform complex computations (long-lasting jobs) on large volumes
of data.

For data management systems, we first distinguish between
NoSQL systems [8], which offer weak semantics for replication and
group operations, and NewSQL systems [20], which offer strong
semantics. Within each class, we further classify systems based
on the model they use to represent state. Finally, for system that
implement a structured data model with strong semantics, we dis-
cuss the implementation strategy to obtain such semantics: through
time-based protocols [3], deterministic execution [23], explicit par-
titioning strategies [22], or primary-based protocols [24].

For data processing systems, we identified three main lines of
research and implementation. Dataflow systems organize tasks into
an acyclic graph, where edges represent the flow of data from task
to task. We observed a clear distinction between dataflow systems
that perform deployment at the granularity of individual tasks
(when they are ready to be executed) and dataflow systems that
perform deployment at the level of entire jobs (when the jobs are
submitted by clients). A third class of systems focuses on graph
data structures and algorithms.

Concerning the remaining systems, we distinguish among those
that implement data processing or computational abstractions on
top of a data management core [19], those that explore new pro-
gramming models [11], and hybrid systems that try to integrate
data processing and management capabilities within a unified solu-
tion [1, 7].

4 DISCUSSION AND FUTURE RESEARCH
Our unifying model enables us to capture the hidden similarities
and subtle differences between systems. The tutorial presents the
main messages we derive from our analysis and shows promising
strategies for future research directions.

State and data management. We observe that data management
and processing systems are mostly complementary with respect
to state and data management. The former are designed to handle
lightweight jobs that read and modify a globally addressable mu-
table state, while the latter target computationally expensive jobs
that transform input data into output data, and do not consider
state at all or consider it only within individual tasks. Due to their
orthogonal goals, these systems are frequently used in conjunction
within the software architecture of many companies.

Traditionally, their roles were sharply distinct: data management
systems handled read-write jobs that mutate the state of the appli-
cation, while data processing systems performed periodic read-only
analytical computations to gather insights from data.

Recent architectural patterns [15], advocate the use of stream
processing technologies to continuously execute data analytics and
guarantee fresh results. In this role, stream processing systems are
starting starting to offer primitives to access the state of their tasks,
thus avoiding the need of external systems to store the results of
their transformations. In practice, they offer the same abstraction
of a key-value data management system. This triggered interesting
research on declarative APIs that integrate streaming data and state
changes into a unifying abstraction [17]. Few systems such as S-
Store [7] and TSpoon [1] further explore the possibility to integrate
data management and stream processing workloads.

Further studying the possible integration of stream processing
and data management both in terms of programming abstractions
and in terms of implementation strategies represents in our opinion
an important area of research with vast potential impact.

Coordination avoidance. As data-intensive systems scale hori-
zontally to exploit the resources of many machines, coordination
may easily become a bottleneck. As a consequence, avoiding or
reducing coordination is a recurring principle in the design of all
data-intensive systems [4]. A deep understanding of the perfor-
mance implications of different coordination avoidance strategies
under various workloads is an interesting research problem, which
may open the room for dynamic adaptation strategies.

Wide area deployment. Virtually all the systems we analyzed are
mainly designed to be deployed within one data center. Some of
them support wide area deployment either with some reduction in
performance or with relaxed guarantees. At the same time, edge
computing paradigm [18] is emerging: it aims to exploit resources
at the edge of the network, close to the end users. Designing data-
intensive systems that embrace this paradigm and simplify the use
of edge resources is an important topic of investigation.

Specialized hardware. The use of specialized hardware was out-
side the scope of our model, but it is an active area of research,
targeting processing accelerators such as GPUs [14], new storage
solutions such as non-volatile memory [2], and network solutions
such as RDMA [10].

As specialize hardware becomes less expensive and easier to
program, studying data-intensive systems that can exploit available
hardware resources and easily adapt to new configurations is an
interesting and area of research with direct impact on industrial
setup.
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Figure 2: Taxonomy of data-intensive systems

5 CONCLUSIONS
This paper presented the content of a tutorial on data-intensive
systems, which is based on our recent work in the area [16]. In the
tutorial, we first present a unifying model for highly heterogeneous
data-intensive systems. The model provides a comprehensive list
of classification criteria to capture the key features of each system.
We present a system taxonomy that we build starting from the
classification criteria and that we use to overview state-of-the-art
systems. Finally, we discuss the main lessons we derived from our
analysis and we highlight promising directions for future research.
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