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ABSTRACT
Making timely-decisions amid the massive influx of financial data
is one of the essential features of stock market analytics. Many
stock market analytics should provide functionalities that compute
multiple technical indicators simultaneously and detect breakout
situations. The DEBS 2022 Grand Challenge (DEBS22 GC) compe-
tition requires to answering two types of queries: technical trend
indicators and detection of crossover patterns. In response to the
competition, we propose a real-time stock market analytic solution
using PySpark and Docker. Our solution calculates the technical
trend indicator—Exponential Moving Average(EMA)—in real-time
with the window function. With the technical indicators computed,
we detect the breakout pattern that helps determine either buy or
sell stocks. Our solution not only improves the speed of deploy-
ing applications using a Docker container image but also can be
accessed easily via a web-based Jupyter notebook.
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1 INTRODUCTION
Making real-time decisions from massive streams of financial data
plays a key role in modern stock market analytics. The analytics has
to process streams of information on both prices and transactions
within a few seconds during trading hours. During recent two years,
the COVID-19 pandemic has impacted the rapid growth of the stock
market in terms of market size and the number of transactions [2].

The DEBS22 GC requires participants to propose a solution that
generates answers to two types of queries. The first query asks to
calculate an exponential moving average (EMA), which is one of
the popular technical indicators that provide advice on the trend of
stock trading. The EMA places a greater significance on the most
recent data points as an extended version of the moving average
(MA). The second query asks the participants to determine whether
to either buy or sell a stock at each crossover. The crossover refers
to a point where two EMAs of different time intervals cross. The
crossover is used to identify a breakout pattern in which the price of
one or more securities will either rise or go down. In other words, a
bullish pattern is an upward trend in the price of a security, whereas
a bearish pattern is a downtrend in the price of a security.

In response to the DEBS22 GC, we propose an extensible and
practical solution, which is built on top of PySpark1 and Docker2.
Our solution can answer the two queries they want to solve and pro-
vides extensions to improve the reproducibility and accessibility of
our solutions. Specifically, our solutions encompasses components
and extensions w.r.t functional and non-functional requirements,
respectively. The first of the main components calculates the EMAs
extracted by applying a window function to financial data streams.
The second one detects the breakout pattern from the crossovers
with the EMAs and generates a buy, sell, or stay advice event per
symbol. Finally, the last component delivers the generated events
to a remote evaluation platform.

The remainder of this paper is organized as follows. Section 2
introduces the technical background and Section 3 describes the
datasets and business questions. Section 4 presents our solution in
detail. In Section 5, we evaluate the results of the proposed solution.
Section 6 describes extended modules for achieving non-functional
requirements. Section 7 addresses challenges faced in the current
version of our solution. The final section presents our conclusions
and future directions.
1https://spark.apache.org/docs/latest/api/python/
2https://www.docker.com/
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2 TECHNICAL BACKGROUND
This section describes the PySpark and Docker used in the proposed
solution for the DEBS 2022 GC.

2.1 PySpark: Collaboration of Apache Spark
and Python

PySpark allows users to write Apache Spark applications using
Python API[6]. Apache Spark, which is an open-source and dis-
tributed data processing framework, is widely used for large-scale
data analytics. Hence, Python is a general-purpose, high-level pro-
gramming language in support of various and powerful external
libraries such as Keras3. Thus, PySpark supports many features of
streaming analytics based on Apache Spark and works with a wide
range of external libraries.

We leverage key data structures and methods in the structured
streaming programming model4. A streaming dataframe, window
function, and watermark operator are utilized. First, the streaming
dataframe represents an unbounded input table where tick data that
arrives at the system are treated as data streams. Second, the win-
dow function extracts a portion of the input stream, e.g., events in
the last 5 minutes. This function can compute an aggregate function
in an incremental fashion[8]. The computation combines historical
data of the previous windows with new data of the current window
for aggregation whenever new data arrive. Last, the watermark op-
erator handles events that arrive at the system lately. This operator
waits for processing late events up to a specified threshold on how
late the data is expected.

2.2 Docker: Enabling Rapid Deployment
Docker can facilitate both the reproducibility and the rapid deploy-
ment of applications. It is a virtualization platform that composes
software in a package called a container[9]. In addition, users can
make up multiple new containers horizontally to perform testing
under different configurations in execution environments.

3 DATASETS AND BUSINESS QUESTIONS
This section introduces the stock market datasets provided by
DEBS22 GC and describes business queries 1 and 2 in detail.

3.1 Infront Financial Datasets
Infront financial dataset[3] contains 289 million tick data events
from November 8 to 14th, 2021. Specifically, the dataset has 5,504 eq-
uities and real-time trading events on the European stock exchanges
in Paris, Amsterdam, and Frankfurt. The attribute names in the
dataset schema are< 𝑖𝑑, 𝑆𝑒𝑐𝑇𝑦𝑝𝑒, 𝐿𝑎𝑠𝑡,𝑇𝑟𝑎𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒,𝑇𝑟𝑎𝑑𝑖𝑛𝑔𝑑𝑎𝑡𝑒 >.
In detail, 𝑖𝑑 indicates a unique identifier for a symbol with respec-
tive exchange, e.g., Paris(FR); 𝑆𝑒𝑐𝑇𝑦𝑝𝑒 indicates a security type
to decide either an equity or index; 𝐿𝑎𝑠𝑡 indicates the stock trade
price of the last event; Both 𝑇𝑟𝑎𝑑𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 and 𝑇𝑟𝑎𝑑𝑖𝑛𝑔 𝑑𝑎𝑡𝑒 indi-
cates date and time values at which the last event is created by
event sources, respectively. Since the dataset size is enormous, e.g.,

3https://keras.io/
4https://spark.apache.org/docs/latest/structured-streaming-programming-
guide.html

about 24.9GB, the dataset has to be processed in multiple batches
of messages as price event streams.

Listing 1 shows the schema of event messages retrieved from an
evaluation platform. Specifically, the variables of 𝑠𝑦𝑚𝑏𝑜𝑙 , 𝑠𝑒𝑐𝑡𝑦𝑝𝑒 ,
𝑙𝑎𝑠𝑡𝑡𝑟𝑎𝑑𝑒𝑝𝑟𝑖𝑐𝑒 , 𝑙𝑎𝑠𝑡𝑇𝑟𝑎𝑑𝑒 in the message structure are identical to
the attribute names of 𝑖𝑑 , 𝑆𝑒𝑐𝑇𝑦𝑝𝑒 , 𝐿𝑎𝑠𝑡 , and 𝑐𝑜𝑣 (𝑇𝑟𝑎𝑑𝑖𝑛𝑔 𝐷𝑎𝑡𝑒,

𝑇𝑟𝑎𝑑𝑖𝑛𝑔 𝑇𝑖𝑚𝑒) in the dataset, respectively. Here, the 𝑙𝑎𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒

indicates an ingestion time that captures the time at which a price
eventwas received in our solution. The function 𝑐𝑜𝑣 returns timestamp-
typed data by combining values of both arguments into one. Note
thatwe utilize the schema to process streams of price events through-
out this paper.

Listing 1: The schema of event messages
message Event {

s t r i n g symbol = 1 ;
SecType s e c t yp e = 2 ;
f l o a t l a s t t r a d e p r i c e = 3 ;
goog l e . p r o t obu f . Timestamp l a s tUpd a t e = 4 ;
goog l e . p r o t obu f . Timestamp l a s t T r a d e = 5 ;

}

3.2 Business Queries
3.2.1 Query 1: EMA as a technical indicator. Query 1 asks to calcu-
late the latest EMA per symbol in a continuous fashion. Especially,
the purpose of EMA is to track a price of a given stock with time.
The EMA gives more importance to recent price data while less
importance to previous price data. The EMA indicator produces
buy and sell signals.

The conditional statement of the EMA is defined as the follows:

𝐸𝑀𝐴
𝑗
𝑤𝑖

=

[
𝐶𝑙𝑜𝑠𝑒𝑤𝑖

·
(

2
1 + 𝑗

)]
+ 𝐸𝑀𝐴

𝑗
𝑤𝑖−1︸    ︷︷    ︸

prev. window

·
[
1 −

(
2

1 + 𝑗

)]
(1)

where𝑤𝑖 denotes 𝑖-th tumbling window with 5 minutes duration,
𝑗 denotes smoothing factor for EMA with 𝑗 ∈ {38, 100}, 𝐶𝑙𝑜𝑠𝑒𝑤𝑖

denotes last price event observed within window𝑤𝑖 , and 𝐸𝑀𝐴
𝑗
𝑤𝑖−1

denotes the EMA calculated within the previous window𝑤𝑖−1.
The EMA reacts more significantly to the last price event than

changes in the previous ones. Specifically, multiple price events
are observed within a fixed width of windows. Each window is a
tumbling window that does not overlap with each other. The EMA
of the current window is calculated by giving more weighing on
the latest price while giving less weighing on the last EMA of the
previous window.

Here, we denote a short-(and long-) term exponential moving av-
erage with 38(and 100) days of the smoothing factor by EMA38(and
EMA100), respectively.

3.2.2 Query 2: Breakout pattern detection. Query 2 asks to detect
whether or not a breakout pattern happens from a crossover point.
The bullish pattern signals a change in the uptrend, especially when
the short-term moving average crosses above the long-term. A buy
advice event is triggered when detecting the bullish pattern. On the
other hand, the bearish pattern signals a change in the downtrend,
especially when the short-term moving average crosses below the
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Figure 1: The overall process of the proposed solution

long-term. A sell advice event is triggered when the bearish pattern
happens.

The conditional statements of both bullish and bearish patterns
are defined as follows:

• Bullish pattern: can be detected iff 𝐸𝑀𝐴38
𝑤𝑖

> 𝐸𝑀𝐴100
𝑤𝑖

and
𝐸𝑀𝐴38

𝑤𝑖−1 ≤ 𝐸𝑀𝐴100
𝑤𝑖−1 . Subsequently, a buy event has to be

generated when the short-term EMA crosses above the long-
term EMA.

• Bearish pattern: can be detected iff 𝐸𝑀𝐴38
𝑤𝑖

< 𝐸𝑀𝐴100
𝑤𝑖

and
𝐸𝑀𝐴38

𝑤𝑖−1 ≥ 𝐸𝑀𝐴100
𝑤𝑖−1 . Subsequently, a sell event has to be

generated when the long-term EMA crosses above the short-
term EMA.

Here, the 𝐸𝑀𝐴38
𝑤𝑖

and 𝐸𝑀𝐴100
𝑤𝑖

indicates the smooth factors of
38 and 100 days, respectively, The𝑤𝑖 indicates an instance of 𝑖-th
tumbling window.

4 OUR SOLUTION
Figure 1 shows the overall process of the proposed solution. The
overall process consists of five stages. In the first stage, our solu-
tion receives input streams of batch events from the DEBS22 GC
evaluation platform. The second stage performs the data transfor-
mation with the window function. In the third stage, our solution
produces results of Query 1 using the EMA calculation component.
The fourth stage detects a breakout pattern to produce results of
Query 2. At the same time, the results of both queries are delivered
sequentially to the evaluation platform via the submission mod-
ule. The evaluation platform measures KPIs of the latency and the
throughput.

4.1 Reading streams of stock market data
The event stream reader receives price event streams for each batch
per request. The price events are loaded into memory, and each has
10,000 records. This component converts price event streams into
CSV files and stores them into a persistent disk whenever events
arrive. Thus, the price events are appended into the streaming
dataframe.

It is worth noting that Apache Spark assigns a specified path
of stored files to a streaming source. Then, it creates a streaming
dataframe automatically from the streaming source.

4.2 Transforming data using window functions
This component extracts the last price events of the current window
using window functions to calculate both EMA38 and EMA100.
Specifically, tumbling windows with a length of five minutes and a
period of fiveminutes have to be applied to the streaming dataframe.
The component extracts a record of the last price event of the
current window whenever the window is triggered.

Here, we used the watermark function to process late events. In
particular, we set the wait interval of the watermark function to
five minutes so that the window function accepts the data which
arrives within five minutes. In other words, data that arrive later
than five minutes are discarded.

4.3 Calculating EMAs
This component performs calculations of both EMA38 and EMA100
in Query 1. To help your understanding, let us consider Equation
(1) again. It is important to keep track of computed values of both
EMA38 and EMA100 to speed up calculating the EMA value of the
next window.

For this calculation, the EMA values of all symbols were ini-
tialized with 0.0. At the initial window, none of the symbols has
EMA values. We create an EMA table that traces the latest values
of computed EMAs of all symbols for consecutive calculations of
each window instance. The latest values per symbol in the table
are regarded as EMA values of the previous window in calculating
EMAs of the current window.

To calculate the current EMA values, it finds the latest EMA
values of given symbols in the table. Then, it applies Equation (1)
to both the found values and the last price event of the current
window. After that, we update both the previous and the current
EMAvalues in the table with the calculated results.We renew values
of both EMA38 and EMA100 relating to symbols only required for
the evaluation to alleviate the overhead of the EMA table search.
Finally, we send the latest values of both EMA38 and EMA100 for
only lookup symbols by DEBS22 GC.

4.4 Detecting crossover patterns
This component identifies the crossover pattern per symbol with
both EMA38 and EMA100 values of consecutive windows. Accord-
ing to the program logic of Query 2, we create a buy advice event
when a bullish pattern occurs. And we create a sell advice event
when a bearish pattern occurs. For other cases, a stay advice event
has to be generated. The difference between the corresponding val-
ues of EMA38 and EMA100 may incur breakout patterns. We create
a diff table that records the difference values constantly. The table
is selectively updated only for symbols of interest. We select only
both sell and buy advice events(except for the stay advice events).
Then we filter them out to obtain the last three advice events for
only lookup symbols by DEBS22 GC. Finally, this component sends
the filtered events to the submission module.

4.5 Submitting answers continuously to the
evaluation platform

The submission module encodes the query results into messages(as
shown in Table3.1) and conveys them to the evaluation platform
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through gRPC API5. Especially, the message of Query 1 contains
multiple numbers of records consisting of symbol, EMA38, and
EMA100 indicators corresponding to the sequence number of the
batch and the benchmark id. The message of Query 2 contains the
last three crossover events for lookup symbols corresponding to the
sequence number of the batch and the benchmark id. In addition,
each crossover includes the symbol, the timestamp, the security
type, and the signal type of either buy or sell advice event. The
evaluation is terminated when the last batch number is reached.

5 EVALUATION
5.1 Experimental setup
The execution environment of our solution was built on the top of
PySpark 3.2.0, Java 8, and Linux. We utilized the structured stream-
ing programmingmodel that allows users to support an incremental
event aggregation using thewindow function and handle late events
using the watermark functions. We created a Docker container file
to enable users to establish the same execution environment like
ours and deploy our solution on the user execution environment. To
improve the reproducibility, accessibility, and usability, we gener-
ated a Jupyter notebook6 file that enables users to test our solution
via a web browser.

We developed our solution as an open-source project, and it can
be accessed on our Github7. Moreover, both source codes and quick
tutorials for three extensions in Section 6 are available without any
restrictions.

5.2 Experimental results
We as Group-4 evaluated our solution in terms of latency and
throughput as key performance indicators(KPIs). The latency is
defined as the elapsed time from start time at which each batch of
price events is received from the evaluation system to the finish time
at which the query result is submitted. Each batch had 10,000 price
events and a list of lookup symbols required for the submission. Up
to 2000 batches, we measured an average latency of all price events
received.

As the results, we obtained 10,115 and 11,214 milliseconds of the
average latencies for results of queries 1 and 2, respectively. In terms
of maximum latency, our solution took up to 47 and 49 seconds for
executing queries 1 and 2, respectively. In the 1000th and above
batches, the query execution took more than 10 seconds, compared
to the previous batches. In the next section, we will discuss why
the performance degradation occurs.

6 EXTENSIONS
In this section, we present three extended modules besides our
solution. Likewise, all source codes can be accessed at Github7.

5https://grpc.io/
6https://jupyter.org/
7https://github.com/developsu/debs2022gc

Figure 2: The Architecture of StockInflux

Figure 3: The screenshot of the real-time quotes monitor

6.1 StockInflux: Scalable and Fast WebApp
Figure 2 shows our architecture of StockInflux web application.
The goal of StockInflux is to provide users with real-time decision-
making in stock market analysis in terms of scalability and persis-
tence. Currently, it is an early stage, so only the real-time quotes
monitor is available now. Figure 3 shows the screenshot of the
real-time quotes monitor. The real-time quotes monitor is a web-
based dashboard that enables users to quickly view price trends at
a glance depending on a selected symbol.

We expected StockInflux to be fast and scalable. For high-
performance on client-side, we utilized React.js8 for refreshing web-
pages asynchronously, Chart.js9 for drawing charts, and Next.js10
for supporting both hybrid static and server rendering. To enhance
the performance on server-side, we implemented StockInflux
based on Spring Boot framework11 supporting a multi-threading
for computations of multiple technical indicators. Last but not least,
we used an open-source time-series database InfluxDB12. This time-
series database speeds up both retrieval and search of price events
using the time series index.

8https://reactjs.org/
9https://www.chartjs.org/
10https://nextjs.org/
11https://spring.io/projects/spring-boot
12https://www.influxdata.com/
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6.2 Jupyter Notebook Publishing
Our solution is easily accessible via the Jupyter Notebook. The
users can test our solution quickly without professional skills. For
instance, users can not only install our solution but also execute it
within a few clicks at Google Colab13. The distribution of using the
Jupyter Notebook encourages participations of users who want to
add on various kinds of technical indicators. Besides, we expect it to
be combined with existing Python-based deep learning libraries[7],
e.g., stock prediction models[5].

6.3 Docker Integration
We ensured the reproducibility of our solution by creating a Docker
image file. The Docker image file contained all the commands to
build the execution environment where our solution runs. So the
created image contained the gRPC library, PySpark, and so on. In
addition, we included pyngrok library14 to permit external access
to the Apache Spark UI for performance monitoring. We also con-
tainerized all components of StockInflux and created a script
file in form of docker-compose. For an efficient communication
between containers, we configured a network bridge that operates
independently to external network. Therefore, our Docker integra-
tion enables users to set up their execution environment identical
to ours with a few commands.

7 CHALLENGES FACED
Despite many advantages obtained by using PySpark, our solution
suffers from performance degradation for query execution. The
current version of PySpark does not support the stateful operation
that can maintain a summary of previous data[4]. So we convert
the Spark dataframe into a Pandas dataframe to keep track of price
events of the previous window. Such as conversion requires an ex-
pensive cost, e.g., about 800 milliseconds. The cost was a significant
factor in lowering the latency. To minimize the overhead of the
conversion, we used the conversion once for query execution.

There is a strategy to solve the problem. The strategy is to per-
form the stateful streaming aggregationwith the mapGroupWithState
operator. Still, the operator is not supported in the current version
of PySpark, but is supported in pure Apache Spark.

8 CONCLUSION AND FUTUREWORK
To conclude, we have implemented our solution that provides real-
time answers to two business queries by DEBS 2022 GC. In response
to the functional requirements, the proposed solution has calculated
the EMA indicators using the window, watermark, and aggrega-
tion functions. Moreover, we have identified breakout patterns and
decided either buy or sell advice events. To achieve non-functional
requirements of high accessibility and fast reproducibility, we have
developed the PySpark-based solution and created a container im-
age for running our solution. Besides, we have implemented Stock-
Influx for analyzing the stock market streams via the real-time
charting view.

In future research, we plan to develop stateful operations to im-
prove the performance of our aggregation methods. In addition, the

13https://colab.research.google.com
14https://pyngrok.readthedocs.io/en/latest/index.html

optimization of concurrent streaming queries[10] will be investi-
gated so that a variety of technical indicators can be handled.
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