
Interactive and Explorative Stream Processing
Timo Räth

supervised by Kai-Uwe Sattler
Technische Universität Ilmenau, Germany

timo.raeth@tu-ilmenau.de

ABSTRACT
Formulating a suitable stream processing pipeline for a particu-
lar use case is a complicated process that highly depends on the
processed data and usually requires many cycles of refinement.
By combining the advantages of visual data exploration with the
concept of real-time modifiability of a stream processing pipeline
we want to contribute an interactive approach that simplifies and
enhances the process of pipeline engineering. As a proof of concept,
a prototype has been developed that delivers promising results in
various test use cases and allows to modify the parameters and
structure of stream processing pipelines at a development stage
in a matter of milliseconds. By utilizing collected data and statis-
tics from this explorative intermediate stage we will automatically
generate optimized runtime code for a standalone execution of the
constructed pipeline.

CCS CONCEPTS
• Information systems → Data streaming; • Software and its
engineering → Integrated and visual development environments.

KEYWORDS
Stream Processing, Dataflow, Data Analysis, Data Visualization,
Query Optimization, Code Generation
ACM Reference Format:
Timo Räth. 2022. Interactive and Explorative Stream Processing. In The 16th
ACM International Conference on Distributed and Event-based Systems (DEBS
’22), June 27–30, 2022, Copenhagen, Denmark. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3524860.3543287

1 INTRODUCTION
Data Science has become one of the hot topics of our time due
to the continuously advancing digitization and networking of the
world. Increasingly large and heterogeneous amounts of data are
being produced and need to be transmitted, stored, and analyzed.
Especially the real-time processing of endless data streams becomes
more important to quickly react to changes, e.g. in sensor networks.

Numerous stream processing engines (SPE) have steadily evolved
in recent years to cope with the ever-increasing data volumes by
clever mechanisms such as distributed processing on large com-
pute clusters (scale-out) or exploitation of modern hardware de-
velopments such as GPU computing and fast memory like PMEM

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DEBS ’22, June 27–30, 2022, Copenhagen, Denmark
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9308-9/22/06.
https://doi.org/10.1145/3524860.3543287

(scale-up). However, despite all the technical tools and possibili-
ties, the fundamental challenge still lies in the correct creation and
configuration of the data processing pipeline to be able to draw
the proper conclusions from the incoming data streams. This is
complicated by two major problems that build on each other. First,
the required pipeline structure highly depends on the data that
needs to be processed, whose characteristics might not be clear in
advance. Second, to evaluate if the configured pipeline fits the data
and requirements, it needs to be compiled, distributed and executed
before subsequent structural changes and adjustments can be made.
This development process usually takes many iterations which not
only requires a lot of time but also makes working with the data
and understanding correlations much more difficult.

Two major challenges arise from this problem statement that
we aim to overcome in our work. First, the smart and adaptive
visualization of stream processing data to assist the process of data
exploration, and second, the introduction of a dynamic pipeline
structure that can be modified dynamically at runtime to simplify
and speed up the engineering workflow.

Tools such as Apache Zeppelin1 and Jupyter Notebook2 have
recognized this fundamental difficulty of gaining insight from data
and have created ways to interactively visualize numerous datasets,
making them easier to interpret. However, the applicability of such
tools to data stream processing scenarios has proven to be limited
due to its dynamic nature, especially for runtime changes of the
pipeline structure or data characteristics.

Changes in the pipeline structure at runtime require a lot of
additional work for current SPEs. [1] and [2] have shown that after
such changes in Apache Spark3 and Apache Flink4, a costly recom-
pilation and redistribution of the pipeline executable to all involved
compute nodes is required to ensure a correct state transition. This
does not only take a lot of time but also complicates the process of
comprehending the influences of their changes for the developer.
Previous work like [6] have already tackled this issue and developed
interactive approaches to modify pipeline functionality at runtime
however still limit the modification possibilities to a predefined
extent.

Based on the presented challenges and the current state of the
art, the overall goal of this Ph.D. thesis is to simplify and assist the
pipeline engineering process. By proposing a new interactive and
explorative approach to pipeline development we aim to transfer
the strengths and advantages of visual knowledge extraction from
datasets to endless and distributed stream processing applications.
We will develop a dynamic pipeline structure that can be completely
modified at runtime to instantly monitor and understand the effects

1https://zeppelin.apache.org/
2https://jupyter.org/
3https://spark.apache.org/
4https://flink.apache.org/

https://doi.org/10.1145/3524860.3543287
https://doi.org/10.1145/3524860.3543287
https://zeppelin.apache.org/
https://jupyter.org/
https://spark.apache.org/
https://flink.apache.org/


DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Timo Räth

Construct Pipeline
Interpret and

Execute Pipeline
Visualize Pipeline 

and Statistics
Generate and 
Optimize Code

Modify
Pipeline

Figure 1: The conceptual workflow of the proposed approach

Operator

Operator

Operator

Operator

Pipeline
Manager

New Operator

Data
Exchange

Internal Pipeline Structure

Figure 2: Internal pipeline representation with coordinating
pipeline manager

of structural changes. Additionally, we will combine this with an
automatic and adaptive visualization system that supports the ex-
traction of data knowledge and characteristics and allows to follow
the data transformations of each operator. Finally, we will provide
an interface to compile the constructed pipeline in optimized and
executable code utilizing all data and operator statistics that have
been collected during the development process.

The remaining chapters of this paper will propose a proof of
concept prototype for our thesis goal and describe the current state
of the implementation.

2 PROPOSED SYSTEM
Based on the overview of the proposed workflow in Fig. 1 three
consequential tasks arise from this that will be described in the
subsections of this chapter.

• Implementation of a dynamic pipeline structure that can be
modified at runtime [Sect. 2.1]

• Automatic and adaptive data visualization of the pipeline
and its data [Sect. 2.2]

• Pipeline optimization and code generation utilizing collected
data statistics [Sect. 2.3]

2.1 Dynamic Pipeline Structure
The core component of our proposal is the dynamic pipeline struc-
ture, that can be executed and modified at runtime without relevant
delay. Since this kind of structural changes lead to long recompi-
lation times with known SPEs, the approach we propose removes
this limitation already in the core.

First, instead of converting the operator graph that represents
the pipeline to execute into a static structure with fixed inputs, out-
puts, and connections, we will transform it into a flexible internal

representation. This representation is displayed in Fig. 2 and con-
sists of a pipeline manager, the operators of the pipeline, and their
connections to each other. The pipeline manager is responsible for
the pipeline execution and all internal communication and the core
component of the system. After the pipeline is executed for the first
time the manager will be started and running until the development
process is completed. If a structural change occurs the pipeline man-
ager will be notified and inform all affected operators about their
new configuration and connections. This is possible because each
operator works completely independently of the rest of the pipeline
and checks in each processing step to which subsequent operators
the produced data tuple should be passed. If a data tuple should
be exchanged between two operators the manager will receive the
respective tuple and a list of all recipients to distribute the tuple.
This way operators can be easily added, removed, or reorganized by
simply notifying the pipeline manager to trigger a reconfiguration
without restarting the whole pipeline.

Second, we will not only remove long restarting times using
this flexible structure but also the need for long code recompila-
tion times by interpreting operator code instead of compiling it
to a static version. This is possible by using an interpreted pro-
gramming language like Python as the basis of our system and
designing all operators accordingly in a flexible way to quickly
adapt their functionality based on configurable parameters. Espe-
cially user defined-functions like maps or filters can benefit from
this approach since the user code can be exchanged and modified
on runtime in a matter of milliseconds without the need of operator
recompilation. This will greatly simplify the pipeline development
process and reduce the response time of the system which allows
the developer to quickly test and experiment with different versions
of their functions.

However, in addition to its compelling advantages, this approach
also introduces a significant limitation. As with most interpreted
programming languages, performance is usually noticeably behind
that of compiled alternatives, since important optimization steps
are missing. However, our system is primarily aimed at the de-
velopment stage, where pure performance is usually not decisive.
Therefore, this tradeoff between usability and performance can be
accepted in favor of usability in most cases. After several change
cycles, the pipeline may have delivered final satisfactory results
and is ready to be transferred to a production-ready version. Here
the limitations described can be softened by the code generator
outlined in Sect. [2.3] in order to generate optimized, executable
code.

2.2 Adaptive Pipeline Visualization
Tools such as Apache Zeppelin or Jupyter Notebook and [5] have
shown that the visual representation of data and their correlations
contribute significantly to comprehensibility and simplify an evalu-
ation. Especially for stream processing scenarios, this assumption
is true since the required pipeline structure highly depends on the
data that needs to be processed. For this reason, detailed insight
into the data structure and characteristics is required to develop an
efficient and suitable pipeline architecture. Current visualization
tools strongly rely on a clear definition of data types and visualiza-
tion methods in advance. However, in a dynamic stream processing



Interactive and Explorative Stream Processing DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

environment where the structure of the pipeline and therefore
the processed data of each operator may change at runtime, these
methods are not suitable anymore. For this reason, we propose an
adaptive visualization mechanism that automatically chooses suit-
able visualization methods at runtime for each operator depending
on its currently processed data.

This can be achieved by pre-registering supported data types
like text, numbers, and images with corresponding visualization
methods in our system. At runtime after each processed tuple oper-
ators will check if their produced data type has changed and select
the next best visualization method if required. By using a modular
design pattern our visualization components can be easily switched
out at runtime without any significant delay.

Besides the actual representation of the processed data we will
further support the pipeline engineering process by offering many
more statistics that are important for structural design decisions.
For example operator statistics such as throughput, data size, and
processing time can be used to assess which operator could lead to
bottlenecks or congestion and what influence this could have on
the load on the transmission channels. These operator statistics are
not only useful for the developer by supporting his design decisions
but can also be utilized automatically by the pipeline optimizer and
code generator to achieve more efficient pipeline code which is
described in Sect. 2.3.

Finally, we will enhance the development process by providing a
visual at-a-glance view of the overall state of the system. This will
be achieved by representing the pipeline structure and statistics in
a comprehensible way and offering different tools to keep track of
important changes. This is especially important since the pipeline
structure and processed data may change frequently during the
development process. One major tool to visualize crucial aspects of
the pipeline is the operator heatmap which will display the distribu-
tion of execution time, throughput, and memory consumption for
each operator. By automatically adapting its scale to fit the current
statistics distribution effects of structural changes like new bottle-
necks, fully utilized operators, or congestion of communication
channels can be recognized more easily.

2.3 Pipeline Optimizer and Code Generation
The pipeline optimizer and code generator forms the final com-
ponent of our proposal. After the development process has been
completed and a suitable pipeline has been found this component
can be used to automatically optimize the pipeline based on the col-
lected runtime statistics and generate executable standalone code.
By converting the interactive and dynamic parts of the pipeline
described in Sect. 2.1 into static pipeline components, the previous
runtime constraints can be resolved and execution performance
improved. Additionally, common stream processing optimization
methods described in [4], such as operator reordering or operator
fusing, can now be applied to further improve the pipeline structure
and thus execution time. The target language in which the pipeline
is to be generated is open and independent of our system. Through
appropriate interfaces own code generators can be implemented
to convert the given internal pipeline structure into the desired
format. As a proof of concept we will implement our own optimizer

and code generator that demonstrates the utilization of collected
operator statistics to exploit data and runtime correlations.

Modern hardware developments such as GPU computing, faster
memory, or many-core processors offer great potential and scope
for further optimizing the execution and response times of data
stream applications. In [7] it was shown, that speedups of multiple
orders of magnitude can be achieved, by applying a clever and
adapted mechanism utilizing the underlying hardware. We will
focus on the efficient placement of operator functions, which can
be executed either on the CPU or GPU since this decision can be
greatly supported by the collected operator and data statistics. For
example, information collected on the execution time and memory
consumption of an operator in the processing pipeline could lead
to the conclusion that this operator will most likely deliver better
results on the GPU since the data transport to and from the GPU
will be small compared to the computation time. Analogously, more
statistics could be evaluated to assess the suitability of further
optimization methods. As a result, we would like to achieve the
best possible configuration depending on the pipeline structure,
processed data, and execution environment.

Additionally, we consider the GPU kernel fusing method to be
particularly promising for our approach. As presented in [3] con-
secutive GPU kernels can be merged to reduce unnecessary back-
and-forth data transport between CPU and GPU which is often still
one of the bottlenecks for modern applications. Due to the nature of
stream processing applications, this concept can be directly trans-
ferred to our code generator since for each operator that should
execute on a GPU a separate kernel will be generated. By analyzing
the processed data of each operator suitable kernels for fusing can
be identified and merged to reduce data transfer and speed up the
GPU utilization even more.

3 CURRENTWORK
The first tasks of our proposal have been completed and a proto-
type for real-time adaptability of a stream processing pipeline has
been developed with promising results. Based on Apache Kafka5
and the Python SPE Faust6, a dynamic pipeline data structure was
implemented which can be executed and modified at runtime in
a matter of milliseconds. As a proof of concept, we decided on a
scale-up approach on a single machine to demonstrate the feasibil-
ity of our prototype which can be migrated to a distributed system
later on. To validate the functionality and correctness of the pro-
totype numerous operators from the image processing, machine
learning, and stream processing domain have been implemented
and evaluated.

Furthermore, we have developed an adaptive visualization sys-
tem using Rete.js7 library that allows to easily construct and modify
an operator graph based on the idea of flow-based programming.
Fig. 3 demonstrates a sample pipeline that was constructed using
this visual editor and is executed on our Python stream processing
framework. Each operator displays its last produced data tuple by
automatically detecting the best visualization method using our
adaptive mechanism. Numerous data statistics are collected and

5https://kafka.apache.org/
6https://faust.readthedocs.io/en/latest/
7https://rete.js.org

https://kafka.apache.org/
https://faust.readthedocs.io/en/latest/
https://rete.js.org


DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Timo Räth

Figure 3: Sample pipeline constructed with our visual editor and executed using our dynamic pipeline framework

presented to the user for example the throughput of the connections
which is illustrated by using different types of line sizes. The figure
also demonstrates one of our operator heatmaps, that visualizes
the execution time of each operator and helps to detect bottlenecks
of the system.

4 CONCLUSION
Formulating suitable stream processing pipelines for endless streams
of incoming data is a difficult challenge and highly depends on the
particular data to be processed. Many iterations of trial-and-error
with long recompilation and restarting times complicate the devel-
opment process. Additionally, in-depth knowledge of data charac-
teristics and correlations is required to find an efficient solution.

By combining the advantages of visual and adaptive data explo-
ration with the concept of real-time modifiability of a constructed
pipeline at runtime we will add a highly interactive component to
the so-far static process of pipeline creation. We have shown that
our dynamic pipeline structure prototype already offers promis-
ing results as it is able to perform any modification to the pipeline
structure or operator functionality in real-timewhich greatly simpli-
fies and speedups the pipeline development process. Furthermore,
our adaptive visualization approach is able to extensively support
the knowledge discovery in endless data streams by automatically
adapting to the currently processed data in real-time which is es-
pecially essential for dynamic pipeline structures. Finally, after a
suitable pipeline has been found, our pipeline optimizer and code
generator will resolve runtime and performance constraints due to

the flexible nature of our pipeline and convert it to optimized and
efficient standalone code by utilizing collected operator statistics.

ACKNOWLEDGMENTS
This work was partly founded by the Carl-Zeiss-Stiftung as part of
the project ’Engineering for Smart Manufacturing’ (E4SM).

REFERENCES
[1] Toon Albers, Elena Lazovik, Mostafa Hadadian Nejad Yousefi, and Alexander

Lazovik. 2021. Adaptive On-the-Fly Changes in Distributed Processing Pipelines.
Frontiers in Big Data 4 (2021). https://doi.org/10.3389/fdata.2021.666174

[2] Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, and Volker Markl. 2019.
On-the-fly Reconfiguration of Query Plans for Stateful Stream Processing Engines.
In Datenbanksysteme für Business, Technologie und Web (BTW 2019), 18. Fach-
tagung des GI-Fachbereichs „Datenbanken und Informationssysteme" (DBIS), 4.-8.
März 2019, Rostock, Germany, Proceedings (LNI), Torsten Grust, Felix Naumann,
Alexander Böhm, Wolfgang Lehner, Theo Härder, Erhard Rahm, Andreas Heuer,
Meike Klettke, and Holger Meyer (Eds.), Vol. P-289. Gesellschaft für Informatik,
Bonn, 127–146. https://doi.org/10.18420/btw2019-09

[3] Jiří Filipovič, Matúš Madzin, Jan Fousek, and Luděk Matyska. 2015. Optimizing
CUDA code by kernel fusion: application on BLAS. The Journal of Supercomputing
71, 10 (July 2015), 3934–3957. https://doi.org/10.1007/s11227-015-1483-z

[4] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert Grimm.
2014. A Catalog of Stream Processing Optimizations. ACM Comput. Surv. 46, 4,
Article 46 (March 2014), 34 pages. https://doi.org/10.1145/2528412

[5] Junyong In and Sangseok Lee. 2017. Statistical data presentation. Korean J
Anesthesiol 70, 3 (May 2017), 267–276.

[6] Jonas Traub, Nikolaas Steenbergen, Philipp Marian Grulich, Tilmann Rabl, and
Volker Markl. 2017. I2: Interactive Real-Time Visualization for Streaming Data. In
EDBT.

[7] Steffen Zeuch, Bonaventura Del Monte, Jeyhun Karimov, Clemens Lutz, Manuel
Renz, Jonas Traub, Sebastian Breß, Tilmann Rabl, and Volker Markl. 2019. Analyz-
ing Efficient Stream Processing on Modern Hardware. Proc. VLDB Endow. 12, 5
(Jan. 2019), 516–530. https://doi.org/10.14778/3303753.3303758

https://doi.org/10.3389/fdata.2021.666174
https://doi.org/10.18420/btw2019-09
https://doi.org/10.1007/s11227-015-1483-z
https://doi.org/10.1145/2528412
https://doi.org/10.14778/3303753.3303758

	Abstract
	1 Introduction
	2 Proposed System
	2.1 Dynamic Pipeline Structure
	2.2 Adaptive Pipeline Visualization
	2.3 Pipeline Optimizer and Code Generation

	3 Current Work
	4 Conclusion
	Acknowledgments
	References

