
StreamVizzard - An Interactive and Explorative Stream
Processing Editor

Timo Räth
Technische Universität Ilmenau, Germany

timo.raeth@tu-ilmenau.de

Kai-Uwe Sattler
Technische Universität Ilmenau, Germany

kus@tu-ilmenau.de

ABSTRACT
Processing continuous data streams is one of the hot topics of our
time. A major challenge is the formulation of a suitable and efficient
stream processing pipeline. This process is complicated by long
restart times after pipeline modifications and tight dependencies
on the actual data to process. To approach these issues, we have
developed StreamVizzard - an interactive and explorative stream
processing editor to simplify the pipeline engineering process. Our
system allows to visually configure, execute, and completely mod-
ify a pipeline during runtime without any delay. Furthermore, an
adaptive visualizer automatically displays the operator’s processed
data and statistics in a comprehensible way and allows the user to
explore the data and support his design decisions. After the pipeline
has been finalized our system automatically optimizes the pipeline
based on collected statistics and generates standalone runtime code
for productive use at a targeted stream processing engine.

CCS CONCEPTS
• Information systems → Data streaming; • Software and its
engineering → Integrated and visual development environments.

KEYWORDS
Stream Processing, Dataflow, Data Analysis, Data Visualization,
Query Optimization, Code Generation

ACM Reference Format:
Timo Räth and Kai-Uwe Sattler. 2022. StreamVizzard - An Interactive and
Explorative Stream Processing Editor. In The 16th ACM International Con-
ference on Distributed and Event-based Systems (DEBS ’22), June 27–30,
2022, Copenhagen, Denmark. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3524860.3543283

1 INTRODUCTION
Working with continuous data in endless data streams is one of the
big challenges of our time. Due to the steadily progressing digitiza-
tion more and more applications require large and heterogeneous
amounts of data that are produced, transmitted, stored, and ana-
lyzed. Strict real-time criteria often apply to the data, for example
in critical sensor networks, so it is crucial to develop optimized and
efficient stream processing applications to process the data in time.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DEBS ’22, June 27–30, 2022, Copenhagen, Denmark
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9308-9/22/06.
https://doi.org/10.1145/3524860.3543283

This development process is complicated by two major issues.
First, detailed knowledge of the data structure and characteristics is
required to configure a stream processing pipeline that fulfills the
requirements. This is especially important when optimizing and
accelerating the operator execution time for example by utilizing
modern hardware, like GPU or many-core CPU architectures. Sec-
ond, many cycles of refinement are usually required until a suitable
pipeline configuration has been found. This process involves re-
peated recompilation, deployment, execution, and evaluation of the
pipeline program, before further adjustments and modifications can
be applied, and significantly slows down the pipeline development.

Previous work aimed to solve these issues by developing ad-
vanced stream processing visualization and pipeline modification
methods. [1] and [2] have shown that operators can be exchanged
in running stream processing engines (SPE) like Apache Spark1 and
Apache Flink2 without the need to restart however this requires a
lot of additional work and long recompilation time. In [10] a system
was developed to modify the data flow of a pipeline on runtime by
utilizing control messages in Apache Flink. However, this approach
can only be applied for predefined control flow variations. [4] and
[8] have developed two tools to support the knowledge extraction
from streaming data in an interactive way. However, all previous
tools are either designed for static stream processing pipelines or
require long recompilation times after a pipeline modification and
therefore solve only some parts of the problem statement above.

In our demonstration, we present a new interactive and explo-
rative stream processing editor - StreamVizzard - that aims to sim-
plify and enhance the pipeline development process. By allowing
completely modifying the pipeline structure on runtime the devel-
oper can immediately see the effects of his changes without long
restart times. Together with our adaptive pipeline visualization the
user can explore the processed data, understand the influences and
effects of each operator and interactively develop a pipeline that
fulfills his requirements.

In the next chapter, we will list requirements for such a system to
solve the difficulties and issues in the pipeline development process
as identified above. Afterward, we will present our system in Sect.
3 and describe how we implemented those requirements. In Sect. 4
we will demonstrate the easy extensibility of our system and give
an outlook in Sect. 5, what visitors can experience at our demo.

2 REQUIREMENTS
Pipeline Configuration & Runtime Modification. A fundamen-
tal part of the pipeline engineering process is the configuration
of the pipeline to execute. Usually, many iterations of execution,
validation, and modification are required until a suitable pipeline
1https://spark.apache.org/
2https://flink.apache.org/

https://doi.org/10.1145/3524860.3543283
https://doi.org/10.1145/3524860.3543283
https://doi.org/10.1145/3524860.3543283
https://spark.apache.org/
https://flink.apache.org/

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Timo Räth and Kai-Uwe Sattler

has been found. To speed up this slow process and remove long
recompilation and redistribution times the system needs to allow
to configure a pipeline and apply runtime modifications in real-
time without any significant delay. Since the final structure and
components of the pipeline are usually unknown at the beginning
of the development process, operators, parameters, streams, and
connections need to be fully exchangeable by such a system. This
includes the addition and removal of operators as well as changes
in the connections between operators.

DynamicUser-Defined Functions &Mode Join. User-defined
functions (UDFs) are commonly used in any data science applica-
tion and offer a powerful possibility to extend a stream processing
application with custom functionality. During the development
process, this functionality however might need to be changed de-
pending on the other operators and the data flow of the pipeline.
For example, a UDF that removes missing values from energy con-
sumption data streams needs to be adapted completely when the
data to be cleaned changes to recordings of a surveillance camera.
To avoid a slow recompilation of the UDF the system needs to be
able to understand those changes at runtime and immediately apply
them so that the effect is visible without any delay.

Combining continuous data streams with existing machine learn-
ing models is a frequent use case for data science applications for
example to predict changes based on sensor input data. During the
development process, these models might need to be exchanged in
case the input data or its characteristics changes. For example, an
LSTM [9] model that is trained to predict the trend of a time series
based on the last 100 sensor values collected by a preceding window
needs to be exchanged in case the window interval increases to 200.
The system needs to be able to dynamically exchange and reload
existing models on the fly without the need for a restart.

Adaptive Data Visualization. The best pipeline configuration
highly depends on the data that needs to be processed and requires
deep insight into the characteristics and structure of the data. The
system needs to be able to visualize the data that each operator
processes and present valuable statistics like throughput or execu-
tion times to the developer in order to explore the data and support
his pipeline design decisions. Since the operators, the data flow,
and even the data sources might change completely during the
development process, the system needs to automatically adapt its
visualization methods to the changes in the data characteristics.
Especially after the type of data changes an operator needs to im-
mediately select a new suitable visualization method without any
delay. For example, a window operator that visualizes incoming
temperature sensor data with a time series diagram might be re-
quired to change its visualization to a word count histogram after
the data changed to lines of text.

Automatic Pipeline Optimization. Optimizing the pipeline
after the base functionality has been found is an important task to
fulfill use case requirements like real-time processability of the in-
coming data. Besides some generic optimization methods described
in [6] more adapted operator optimizations can be applied by uti-
lizing knowledge about the data and operator statistics like data
size or execution time. A system that aims to enhance and simplify
the pipeline development process should be able to collect such
statistics during the execution phase and automatically detect and
apply suitable optimizationmethods where ever possible. Especially

adaptations to the underlying hardware like executing an operator
on the GPU can be done by the system to speed up the execution
time of the pipeline.

3 SYSTEM DESCRIPTION
Based on the problem statement in Sect. 1 and the requirements
in Sect. 2 we developed StreamVizzard - an interactive and explo-
rative Stream Processing Editor to simplify the pipeline engineering
process. StreamVizzard is a standalone system consisting of three
major components which are illustrated in Fig. 1. First, a visual
user interface to configure and modify a pipeline and explore the
processed data and statistics. Second, an internal, dynamic stream
processing engine, responsible for executing the pipeline and sup-
porting runtime modifications. Third, a pipeline optimizer and code
generator that automatically optimizes the pipeline based on col-
lected data and statistics and produces adapted and efficient code
for a target stream processing engine (SPE).

3.1 Adaptive Visualizer & User Interface
With existing data visualization tools like Apache Zeppelin3 and
Jupyter Notebook4 and previous ideas like [3] and [7] in mind, we
designed an adaptive and interactive user interface to modify the
pipeline and explore the processed data. Based on the Javascript
framework Retejs5 we developed a web application that connects
to our dynamic stream processing engine described in the next
chapter over an API and allows to interactively configure and mod-
ify a pipeline. With a drag and drop approach, a user can choose
from predefined or custom operators and intuitively connect them.
To test the pipeline, the configured structure is sent to our engine,
interpreted, executed, and results returned back over the API. The
results which contain information about the processed data and
operator statistics are then visualized by our web application. Dur-
ing the execution of the pipeline, the user can modify operator
parameters, change connections between operators or remove and
introduce completely new operators in real-time. All changes are
continuously sent to the engine over the API to immediately apply
them to the running pipeline. Since the processed data type of each
operator might change during the execution we developed a generic
and adaptive visualization component, that automatically adapts to
changes in the data to visualize and chooses the best visualization
method. Furthermore, valuable statistics are presented to the user
in a comprehensible way like the throughput of each operator as
well as processing speed and data volume to support the user in his
pipeline design decisions. By presenting those statistics in form of
a live heatmap, the user can detect bottlenecks or critical sections
at a glance even for complex pipelines, and observe how these are
influenced by changes in the structure or operator parameters.

3.2 Dynamic Stream Processing Engine
The internal dynamic SPE is the core component of StreamVizzard
and is responsible for the flexible behavior of the system. Based on
Apache Kafka6 and the Python SPE Faust7 we developed an adapted
3https://zeppelin.apache.org/
4https://jupyter.org/
5https://rete.js.org
6https://kafka.apache.org/
7https://faust.readthedocs.io/en/latest/

https://zeppelin.apache.org/
https://jupyter.org/
https://rete.js.org
https://kafka.apache.org/
https://faust.readthedocs.io/en/latest/

StreamVizzard - An Interactive and Explorative Stream Processing Editor DEBS ’22, June 27–30, 2022, Copenhagen, Denmark

Dynamic Stream
Processing Engine

Adaptive Visualizer

Optimizer & Code
Generator

Pipeline Manager

Operator Operator

Operator

Operator

Monitor
Runtime
Manager

ExecuteNotify

Pipeline

Update
API

Pipeline
Modifications

…

Final Pipeline

Data &
Statistics

Figure 1: Architecture of StreamVizzard representing the different components and connections via the API. The Adaptive
Visualizer demonstrates our web application to configure a pipeline and explore the processed data.

SPE with complete exchangeability of operators and connections in
mind. During runtime connections between operators can be easily
exchanged as well as new operators added or existing ones removed
without any delay. This flexibility is possible due to the dynamic
nature of each operator that checks after every processing step,
which succeeding operators should receive its produced data tuple.
A central pipeline manager coordinates the execution of operators
and the exchange of data between the different components. When
the structure of the pipeline is changed, for example through the
web application, the pipeline manager triggers an internal update
of the pipeline structure without the need to restart the pipeline.
All operators keep their current state, even if parameters or connec-
tions changed, and continue executing after the update has been
completed.

Using Python as an underlying programming language for our
engine allows us to execute and exchange the code of UDFs during
runtime without any delay. This allows the developer to immedi-
ately see and understand the effects of his changes and the influence
on the pipeline procession.

As a tool designed and targeted for the pipeline development
process, this dynamic nature of our engine comes at the cost of a
slightly slower execution speed compared to a static engine, which
is acceptable in exchange for the extensive flexibility in most cases.
Furthermore, the pipeline optimizer described in Sect. 3.3 dissolves
those dynamic components after the pipeline has been finalized to
achieve the best execution speed for the targeted platform.

3.3 Automatic Optimizer & Code Generator
The pipeline optimizer and code generator is the final component
of the system. After the development phase of the pipeline has been
completed it should be optimized for productive use and exported
to the target programming language and SPE. We have developed
an optimizer, that is able to apply common stream processing opti-
mization concepts described in [6] for example fusing subsequential
operators to reduce communication overhead. Moreover that all
dynamic components like the flexible relations between operators
are removed to further speed up the execution time. During this
process, the optimizer takes statistics like data types, throughput
and data volume into consideration that were collected during the
development phase to enhance the quality of optimization methods.
When targeting GPU accelerated stream processing as described
in [11] this allows to decide for efficient placement of operators
depending on their processing time and data size. For example, an
operator that performs a computation-heavy model join with a
machine learning model might be placed onto the GPU while an
operator that executes a simple preprocessing task is more efficient
on the CPU.

The final task of this system component is the generation of
standalone pipeline code for the targeted SPE. As a proof of con-
cept, we have chosen the Python Faust SPE as a target platform to
generate the code. As described in Sect. 4 this can be easily adapted
to the desired SPE by utilizing our compilation interfaces.

DEBS ’22, June 27–30, 2022, Copenhagen, Denmark Timo Räth and Kai-Uwe Sattler

4 EXTENSIBILITY
StreamVizzard was designed modularly with extensive adaptability
in mind. The different components of the system are loosely con-
nected over powerful interfaces and APIs as displayed in Fig. 1 and
can be exchanged easily. For example, a custom visualizer can be
implemented as a standalone monitoring application that communi-
cates via defined APIs and socket connections with the core engine
to present the state of the pipeline to the user. Moreover, instead of
our visual drag and drop pipeline editor, other pipeline description
approaches can be applied for example a custom Domain Specific
Language (DSL) like SQL or a high-level query interface like in [5]
to configure the pipeline to execute and modify.
class MyCustomOperator(Operator):

def _execute(self , tupleIn: Tuple) -> Tuple:

Calculates the standard deviation

of the input data frame

df = tupleIn.data [0]

std = df.std()

return self.createTuple(std ,)

Listing 1: Demonstration on how to add custom operators to
the stream processing engine.

StreamVizzard currently supports a variety of operators from
different fields in the data science domain like stream processing,
machine learning, and image processing. New operators can be
easily added by extending our operator base class and configuring
the functionality to execute. Everything else will be handled by
our system. An example of the simple addition of new operators is
presented in List. 1. Since our dynamic stream processing engine is
executed in Python, all data science libraries are available to use
for example Numpy8, Pandas9, OpenCV10, and many more. This
allows to quickly build an extensive database of custom operators
for the required use case and execute them with our engine.

Analogously to the exchangeability of the visualizer a custom
code generator can be added to compile the pipeline to the desired
SPE and programming language. By utilizing our internal pipeline
data structure the operator graph can be traversed and translated
to the respective patterns of the target SPE. During this process col-
lected statistics are available to improve the compilation decisions
for example when targeting GPU computing. Besides generating
code for common SPE like Apache Spark or Apache Flink also
configurations for advanced analytical tools like AWS Kinesis11 or
Azure Stream Analytics12 can be produced to utilize their analytical
strengths on productive use.

5 DEMONSTRATION
The demonstration highlights the completely flexible and dynamic
nature of our system and the benefits of using it to develop a stream
processing pipeline. Visitors are invited to visually configure and
execute a custom pipeline from a wide selection of operators in our
8https://numpy.org/
9https://pandas.pydata.org/
10https://opencv.org/
11https://aws.amazon.com/de/kinesis/
12https://azure.microsoft.com/de-de/services/stream-analytics

web application and apply any modifications on runtime, like struc-
tural changes, to observe the instantaneous results in the execution.
Guests who are familiar with Python as a programming language
will also be able to define any UDF using different data science
libraries and execute them on our system. We will provide different
data sets that can be selected as input sources for the pipeline like
sensor data and camera recordings. Also, the installed webcam can
be used to receive live data and apply modifications to it.

By using our adaptive visualizer guests can explore the unknown
data sets and experience the full pipeline engineering workflow
from scratch. This involves identifying information about the dif-
ferent data types, their sizes, and their characteristics as well as
detecting problematic sections or bottlenecks of the pipeline. To
achieve this, operator statistics and our comprehensive heatmap
can be utilized to get an at-a-glance overview of the system. By
modifying operator parameters, and connections on runtime or
even removing operators completely, users will be able to observe
and understand the influence of their changes on the state of the
pipeline.

ACKNOWLEDGMENTS
This work was partly founded by the Carl-Zeiss-Stiftung as part of
the project ’Engineering for Smart Manufacturing’ (E4SM).

REFERENCES
[1] Toon Albers, Elena Lazovik, Mostafa Hadadian Nejad Yousefi, and Alexander

Lazovik. 2021. Adaptive On-the-Fly Changes in Distributed Processing Pipelines.
Frontiers in Big Data 4 (2021). https://doi.org/10.3389/fdata.2021.666174

[2] Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, and Volker Markl. 2019.
On-the-fly Reconfiguration of Query Plans for Stateful Stream Processing En-
gines. In Datenbanksysteme für Business, Technologie und Web (BTW 2019), 18.
Fachtagung des GI-Fachbereichs „Datenbanken und Informationssysteme" (DBIS), 4.-
8. März 2019, Rostock, Germany, Proceedings (LNI), Torsten Grust, Felix Naumann,
Alexander Böhm, Wolfgang Lehner, Theo Härder, Erhard Rahm, Andreas Heuer,
Meike Klettke, and Holger Meyer (Eds.), Vol. P-289. Gesellschaft für Informatik,
Bonn, 127–146. https://doi.org/10.18420/btw2019-09

[3] George Chin, Mudita Singhal, Grant C. Nakamura, Vidhya Gurumoorthi, and
Natalie Freeman-Cadoret. 2009. Visual Analysis of Dynamic Data Streams. Infor-
mation Visualization 8 (2009), 212 – 229.

[4] Fabian Fischer, Florian Mansmann, and Daniel A. Keim. 2012. Real-time visual
analytics for event data streams. In SAC ’12.

[5] Philipp M. Grulich, Breß Sebastian, Steffen Zeuch, Jonas Traub, Janis von Ble-
ichert, Zongxiong Chen, Tilmann Rabl, and Volker Markl. 2020. Grizzly: Efficient
Stream Processing Through Adaptive Query Compilation. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data (Portland,
OR, USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY,
USA, 2487–2503. https://doi.org/10.1145/3318464.3389739

[6] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert Grimm.
2014. A Catalog of Stream Processing Optimizations. ACM Comput. Surv. 46, 4,
Article 46 (mar 2014), 34 pages. https://doi.org/10.1145/2528412

[7] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. 2015. Overview of
Data Exploration Techniques. Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (2015).

[8] Gonçalo Pires, Daniel Mendes, and Daniel Gonçalves. 2019. VisMillion: A novel
interactive visualization technique for real-time big data. 2019 International
Conference on Graphics and Interaction (ICGI) (2019), 86–93.

[9] Ralf C. Staudemeyer and Eric Rothstein Morris. 2019. Understanding LSTM –
a tutorial into Long Short-Term Memory Recurrent Neural Networks. https:
//doi.org/10.48550/ARXIV.1909.09586

[10] Jonas Traub, Nikolaas Steenbergen, Philipp Marian Grulich, Tilmann Rabl, and
Volker Markl. 2017. I2: Interactive Real-Time Visualization for Streaming Data.
In EDBT.

[11] Steffen Zeuch, Bonaventura Del Monte, Jeyhun Karimov, Clemens Lutz, Manuel
Renz, Jonas Traub, Sebastian Breß, Tilmann Rabl, and Volker Markl. 2019. Ana-
lyzing Efficient Stream Processing on Modern Hardware. Proc. VLDB Endow. 12,
5 (jan 2019), 516–530. https://doi.org/10.14778/3303753.3303758

https://numpy.org/
https://pandas.pydata.org/
https://opencv.org/
https://doi.org/10.3389/fdata.2021.666174
https://doi.org/10.18420/btw2019-09
https://doi.org/10.1145/3318464.3389739
https://doi.org/10.1145/2528412
https://doi.org/10.48550/ARXIV.1909.09586
https://doi.org/10.48550/ARXIV.1909.09586
https://doi.org/10.14778/3303753.3303758

	Abstract
	1 Introduction
	2 Requirements
	3 System Description
	3.1 Adaptive Visualizer & User Interface
	3.2 Dynamic Stream Processing Engine
	3.3 Automatic Optimizer & Code Generator

	4 Extensibility
	5 Demonstration
	Acknowledgments
	References

