
A Sneak Peek at RisingWave:
a Cloud-Native Streaming Database

Yanghao Wang, Zhi Liu
Singularity Data Inc

United State
{yanghao,zhi}@singularity-data.com

ABSTRACT
This paper presents RisingWave, a new cloud-native streaming data-
base under development. RisingWave’s mission is to democratize
stream processing: to make stream processing simple, affordable,
and accessible. To achieve that, RisingWave treats streams as first-
class citizens in a database and uses PostgreSQL compatible SQL in-
terface. Users can create their streaming analytical task by defining
materialized views. The views are incrementally maintained in the
RisingWave streaming engine, and are ready to be queried directly
without exporting to an external system. RisingWave is designed
for the cloud. The tiered architecture decouples its components
such that each component scales independently to fully leverage
the cloud infrastructure and reduce the cost. We demonstrate how
RisingWave can simplify users’ real-time analytical missions in the
modern data stack.

CCS CONCEPTS
• Information systems→ Stream management.

KEYWORDS
Stream processing; Streaming databases
ACM Reference Format:
Yanghao Wang, Zhi Liu. 2022. A Sneak Peek at RisingWave: a Cloud-Native
Streaming Database. In The 16th ACM International Conference on Distributed
and Event-based Systems (DEBS ’22), June 27–30, 2022, Copenhagen, Denmark.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3524860.3543284

1 INTRODUCTION
Stream processing is a well-studied topic. Past efforts are largely
devoted to developing fast, parallel, scalable, and reliable stream-
ing systems, such as Apache Flink [9] and Spark streaming [12].
Thanks to these efforts, today’s stream processing systems are run-
ning smoothly to power the real-time analytical requests across the
globe, hosting thousands of applications covering advertisement
recommendation, fraud detection, IoT analytics, and many others
in small businesses. Can we jump to the conclusion that stream pro-
cessing is a solved problem? Unfortunately, the answer is negative,
as many small businesses are still complaining about the high cost

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DEBS ’22, June 27–30, 2022, Copenhagen, Denmark
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9308-9/22/06. . . $15.00
https://doi.org/10.1145/3524860.3543284

of adopting streaming systems, for at least two sets of reasons:

(1) Difficult to learn. Unlike DBMSes that provide SQL as their
interface, most streaming systems require users to learn a set of
low-level programming APIs to manipulate the streaming data.
To make things worse, typically streaming systems represent data
in their raw format instead of the relational model. Users write
complicated logic to transform data between streaming systems
and databases.

(2) Expensive to operate. Although comprehensive scripts and
Docker images are usually available for automatic deployment,
the cost of deploying and maintaining a streaming system is still
disastrous. Typically companies have to purchase many machines
to sustain the smoothness of the cluster for the worst-case scenarios
of a fluctuated workload. Furthermore, assembling an operative
team to maintain the system regularly can also be challenging for
hiring.

RisingWave. This paper presents RisingWave, a new cloud-native
streaming database to tackle both problems. The mission of Rising-
Wave is democratizing stream processing, making stream process-
ing simple, affordable, and accessible to everyone.
Stream processing made simple. RisingWave provides PostgreSQL
compatible SQL interface and can be seamlessly integrated with
the PostgreSQL ecosystem with no code change. RisingWave treats
streams as first-class citizens and allows users to compose complex
queries over both streaming data and historical data declaratively
and elegantly. Anyone with database experience can easily define
their streaming computation tasks in SQL, without worrying about
learning Java or system-specific low-level APIs.
Stream processing made affordable. RisingWave is designed for the
cloud. It adopts a tiered architecture: the core components of Rising-
Wave are fully decoupled into separate layers of services, including
serving layer, meta service, compute nodes, compaction service
and storage. This architecture opens the opportunity for different
services to scale independently based on its own usage, without
the waste of resources in the traditional architecture where compu-
tation and storage are coupled.
Stream processing made accessible. RisingWave is built from scratch
in Rust, and now is open-sourced [7] under Apache License 2.0.
Currently, RisingWave is still under heavy development. Everyone
can participate in the design of the RisingWave project roadmap
and everyone can contribute and send feedback to the community.

Organization. The rest of this paper organizes as follows. Firstly
section 2 gives an overview of RisingWave, including the application
scenario and the system architecture. Secondly, section 3 elaborates
on the technical design of each component in RisingWave. Finally,

https://doi.org/10.1145/3524860.3543284
https://doi.org/10.1145/3524860.3543284

Section 4 describes our demonstration plan for our viewers.

2 RISINGWAVE OVERVIEW
In this section, we give an overview of RisingWave. RisingWave
is a cloud-native streaming database. It treats the stream as a first-
class citizen in a database and can be declared in an extended SQL
grammar. After connecting to upstream stream sources, users can
create their streaming analytical task by simply defining materi-
alized views, which are incrementally and efficiently maintained
in the RisingWave streaming engine. Then the views are ready to
serve users’ queries immediately.

PostgreSQL Interface. RisingWave targets to fully support the
PostgreSQL interface. In particular, this includes: (1) The Post-
greSQL relational model. RisingWave supports most PostgreSQL
data types, including basic types and compositional types. (2) Query
statements. Currently, RisingWave supports a large set of Post-
greSQL standard user queries, including 20 of 22 TPC-H queries. (3)
Client protocol. Users can use their installed psql clients to access
RisingWave directly without installing an extra client.

Sources. Sources are upstream systems that RisingWave can read
data from. Currently, RisingWave accepts data from sources like
Apache Kafka [1], Apache Pulsar [2], AWSKinesis [3], Redpanda [6],
and Debezium [4] Change Data Capture. After defining the sources
and establishing the connection, RisingWave starts reading from
sources and processing them continuously. RisingWave accepts
both stream data in JSON, Protobuf, and Avro format, and the raw
streaming data will be transformed into relational data directly
during their ingestion.

Materialized views. RisingWave allows users to define material-
ized views over both tables and sources, such that the materialized
views capture the accumulative analytical result of the streams.
In addition, RisingWave extends its SQL grammar and natively
supports streaming window functions over sources, including the
tumblingwindow, hopwindow, and slidingwindow. RisingWave pe-
riodically refreshes materialized views incrementally using its high-
performance distributed streaming engine, and users can query
those materialized views anytime directly to extract analytical in-
sights from up-to-date data, without dumping results to an external
system.

Consistency. RisingWave guarantees snapshot based consistency
over materialized views, such that users can expect sensible an-
swers from queries, without worrying the erroneous answer due to
the eventual consistency [11]. In particular the guarantee is twofold,
and we give formal definitions below. (1) Given a query 𝑄 at times-
tamp 𝑡 , the system returns a result 𝑆 such that 𝑄 (𝐷𝑡

′) is consistent
with a snapshot 𝐷𝑡

′ at timestamp 𝑡
′
, where 𝑡

′ ≤ 𝑡 . Here we say
𝐷𝑡 is a snapshot at timestamp 𝑡 if it includes all tuples ingested
into the system before 𝑡 , and exclude all tuples after time 𝑡 , and a
query result 𝑆 is consistent with 𝐷𝑡

′ if the result is equivalent with
evaluating 𝑄 on 𝐷𝑡

′ directly. (2) For any two timestamps 𝑡1 and 𝑡2
with 𝑡1 ≤ 𝑡2, assume the result for Q on 𝑡1 and 𝑡2 are consistent
with snapshots 𝐷

𝑡
′
1
and 𝐷

𝑡
′
2
on 𝑡

′
1 and 𝑡

′
2 respectively, then 𝑡

′
1 ≤ 𝑡

′
2.

That is, later queries will always get results consistent with later
snapshots.

Figure 1: The architecture of RisingWave

3 SYSTEM DESIGN
In this section we describe the detailed technical designs of Rising-
Wave. We start with the architecture, and elaborate the details in
each component respectively.

3.1 Architecture
The overall architecture of RisingWave is depicted in Figure 1. Ris-
ingWave consists of two computation engines in its kernel: the
batch engine and the streaming engine. The batch engine responds
to user issued ad-hoc queries via traditional query processing tech-
niques, while the streaming engines builds workflows to continu-
ously update materialized views. To host both computation engines,
RisingWave decouples its kernel into a few sets of services: fron-
tend, compute engine, storage service, compaction service, and
meta service.

3.2 Frontend nodes
At the serving layer is a set of frontend nodes. These nodes connect
to PostgreSQL clients and answer users’ requests directly. Each
frontend node hosts its independent SQL parser, query planner
and query scheduler. For metadata used during the planning phase,
the frontend periodically receives the update of metadata from the
centralized meta service via push-based notifications. Therefore the
planner can access the local cache on the frontend directly, without
pulling the metadate from meta service.

After parsing via a unified parser, different SQL statements are
redirected into batch engine and streaming engine accordingly
based on their functionality. For ad-hoc queries, the frontend works
in three steps. (1) Generating a logical plan from the parsed abstract
syntax tree. (2) Optimizing the logical plan into an execution plan.
And (3) scheduling the execution plan on compute nodes. For creat-
ing materialized view statements, the frontend builds a streaming
workflow also in three steps. (1) Generating a logical plan. This step
is shared with the batch engine. (2) Building a streaming workflow

HummockManager

Meta Service

HummockClient

Compute Node

HummockClient

Frontend Node

HummockClient

Compaction Node

Shared Storage

(S3)

Figure 2: The architecture of Hummock

from the logical plan. In this step, the logical streaming plan is
fragmented and mapped into streaming executors. Then executors
are duplicated for parallel execution. (3) Scheduling and deploying
the workflow on the compute nodes.

3.3 Compute nodes
At the core of RisingWave kernel is its compute nodes. The cluster
of compute nodes host both the batch engine and the streaming
engine.

Batch engine. The batch engine follows the modern design for
massive parallel query processing. This include a vectorizied query
execution engine and an exchange service for shuffling data be-
tween compute nodes. Queries are also evaluated on each compute
node in multi-threads.

Streaming engine. The RisingWave streaming engine is based on
actor model [10] in concurrent programming. The frontend builds
a set of actors, such that each actor has no internal parallelism,
and responds to the received messages according to its local states
only. Therefore the streaming engine is inherently concurrent and
fully takes advantage of multi-core CPUs via Rust asynchronous
runtime.
Checkpoint. RisingWave uses Asynchronous Barrier Snapshot [8]
to generate consistent snapshots periodically for two purposes:
refreshing materialized views and failure recovery. Therefore Ris-
ingWave guarantees that the accessed data from the storage is
always consistent when querying materialized views. For failure
recovery, whenever the streaming engine crashes, the system glob-
ally rollback to a previous consistent snapshot. During the recovery
process, the system rebuilds all actors and resets their states to the
last consistent checkpoint.

3.4 Storage service
We build Hummock, a cloud-native storage service, that provides
the unified key-value interface for storing and accessing data in
RisingWave. By combining shared cloud storage with tiered caches,
Hummock guarantees the low latency, linearizability, infinite capac-
ity, and strong reliability for the state management in RisingWave
simultaneously.

The architecture of Hummock is given in Figure 2. Hummock

consists of a manager service on the meta service, local Hummock
clients on each worker node (including compute node, frontend
node, and compactor node), and a shared storage to store Sorted
String Tables (SSTs). The shared storage relies on cloud storage
service, e.g., AWS S3.

Hummock is optimized for the streaming workload. For write re-
quest, Hummock optimizes its write path in a similar fashion with
LSM-tree. Hummock client encodes the write batch from shared
buffer into SSTs and upload them into the shared storage, and in-
vokes a compaction job if necessary. The compaction service is
also decoupled from the Hummock client on the compute node to
achieve flexible elasticity. For read requests, Hummock extensively
uses tiered cache to bridge the gap between the latency of mem-
ory and S3. Since stream executors only access their local state,
Hummock can avoid the expensive coordination between different
clients while guaranteeing strong consistency.

3.5 Meta service
The meta service is a centralized service that stores metadata, i.e.,
the true state of the cluster, e.g., the system catalog, cluster mem-
bership, the status of committed epoch etc. Both frontend nodes
and compute nodes periodically synchronize with the meta service
to access up-to-date metadata. This enables other services to be
elastic as other nodes are essentially stateless. The meta service
must survive any failure without compromising consistency, thus
we choose etcd [5] for the durable storage of metadata, as etcd
provides strong consistency over its key-value storage.

The meta service also serves as the centralized coordinator of
the distributed services. For example, the meta service oversees
the scheduling of streaming workflow, scheduling compaction jobs,
issuing and tracking epoch barriers, and coordinating the failure
recovery procedure.

4 DEMONSTRATION
In this demonstration, we invite users to play with RisingWave
and show how RisingWave can significantly simplify users’ efforts
when developing their real-time analytic applications.

During our demonstration, we will invite users to access Ris-
ingWave via local psql clients and issue SQL statements, including
declaring sources, creating materialized views, and querying real-
time results. A Kafka service will also be deployed as the upstream
source. In addition to console clients, RisingWave also offers a
dashboard (shown in Figure 3) for users to speculate the stream-
ing workflow for maintaining materialized views, and monitor the
running status of the cluster. As a showcase, we will present the
following example on RisingWave.

Example 1: Advertisement platforms and advertisers want to mea-
sure the impact of the displayed advertisements by calculating the
click transformation rate (CTR) of all displayed advertisements in
real-time, such that advertisers can change their bids immediately
without wasting money.

In the traditional stream processing stack, the advertiser usually
set up a streaming platform, e.g., Flink, to transform the streaming
data from its raw format to a relational model, and dump the data to
anOLAP system. Then the advertiser can get the CTR by running ad-
hoc aggregation queries in the OLAP system. This process involves

Figure 3: The dashboard of RisingWave showing the stream-
ing workflow

two systems and two sets of API.
With RisingWave, the analytical tasks can be easily done by a

few lines of SQL statements. Firstly, we connect the upstream sys-
tem with RisingWave by creating source statements. Assume that
there are two streams ad_impression and ad_click which can be
consumed from Kafka topics ad_impression and ad_click respec-
tively. Then the SQL statement for stream ad_impression is given
below.
create source ad_impression (

bid_id BIGINT,ad_id BIGINT,
impression_timestamp BIGINT)

with (’connector’ = ’kafka’,
’kafka.topic’ = ’ad_impression’,
’kafka.brokers’ = ’redpanda : 9092’,
’kafka.scan.startup.mode’ = ’earliest’

) ROW FORMAT JSON;
In the SQL statement above, the configurations of Kafka are

specified in the with clause, and the mapping from JSON fields to
the relational schema is defined in the source header. In the above
example, source ad_impression will produce a stream of 3-tuples
continuously, where in each tuple the first column is extracted from
bid_id field and cast into int64 type. Similarly, one can also define
the source ad_click, for which we omit the SQL clause here due to
the space limitation.

After creating sources, we can directly define materialized views
on top of created sources. An example materialized view definition
is given below.
create materialized view ad_ctr as(
select ad_clicks.ad_id as ad_id,

ad_clicks.clicks_count :: 𝑁𝑈𝑀𝐸𝑅𝐼𝐶/
ad_impressions.impressions_count as ctr

from (
select ad_impression.ad_id as ad_id,

count(∗) as impressions_count
from ad_impression
group by ad_id

) as ad_impressions
join (

select ai.ad_id as ad_id,
count(∗) as clicks_count

from ad_click as ac
left join ad_impression as ai

on ac.bid_id = ai.bid_id
group by ai_id

) as ad_clicks
on ad_impressions.ad_id = ad_clicks.ad_id;
The materialized view above calculates the CTR of every ap-

peared advertisement based on the latest impressions and clicks.
Given the view above, users also search the CTR of any adver-
tisement by directly querying ad_ctr in RisingWave, without any
external database.

□

5 FUTUREWORK
There is much to be done before delivering a production-ready
streaming database. We would like to enhance RisingWave in the
following aspects. (1) Richer functionality support. Currently, Ris-
ingWave supports only a small fraction of PostgreSQL SQL stan-
dards. We will be adding more basic functionalities including more
SQL commands, full-fledged access control, user-defined functions
and much more. (2) Schemaless source. Currently, users still need
to define how source data is mapped from nested format to flat
tables upon ingestion. To simplify the users’ usage, we will sup-
port schemaless sources in RisingWave, such that RisingWave can
automatically infer the source schema from received raw data, and
users can speculate the data schema and define views after the data
arrive. (3) Adaptive stream processing. A major technical challenge
is to optimize the pipeline for stream processing. Unlike ad-hoc
queries for which the database can collect statistics in advance, for
stream processing, no knowledge about the underlying stream is
known when creating sources.The technical challenge here is how
to automatically adapt the streaming pipeline on-the-fly.

ACKNOWLEDGEMENTS
We would like to thank Yu Fu, Xiangyu Hu, Zhanxiang Huang,
Renjie Liu, Dr. Yingjun Wu, Chi Zhang, Tianyi Zhuang and many
others for their help and valuable discussions, and thank Heng
Ma, Zhenzhou Pang, Weihao Wang and Tao Wu for their help in
preparing the demonstration.

REFERENCES
[1] 2022. Apache Kafka. https://kafka.apache.org/.
[2] 2022. Apache Pulsar. https://pulsar.apache.org/.
[3] 2022. AWS Kinesis. https://aws.amazon.com/kinesis/.
[4] 2022. Debezium. https://debezium.io/.
[5] 2022. etcd. https://etcd.io/.
[6] 2022. Redpanda. https://redpanda.com/.
[7] 2022. RisingWave source code. https://github.com/singularity-data/risingwave.
[8] Paris Carbone, Gyula Fóra, Stephan Ewen, Seif Haridi, and Kostas Tzoumas. 2015.

Lightweight asynchronous snapshots for distributed dataflows. arXiv preprint
arXiv:1506.08603 (2015).

[9] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

[10] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A universal modular actor
formalism for artificial intelligence. In Proceedings of the 3rd international joint
conference on Artificial intelligence. 235–245.

[11] Frank McSherry. 2020. Eventual Consistency isn’t for Streaming.
https://materialize.com/eventual-consistency-isnt-for-streaming/.

[12] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. 2013. Discretized streams: Fault-tolerant streaming computation at
scale. In Proceedings of the twenty-fourth ACM symposium on operating systems
principles. 423–438.

	Abstract
	1 Introduction
	2 RisingWave overview
	3 System design
	3.1 Architecture
	3.2 Frontend nodes
	3.3 Compute nodes
	3.4 Storage service
	3.5 Meta service

	4 Demonstration
	5 Future work
	References

