
Rethinking how distributed applications are built
Till Rohrmann

Apache Software Foundation
trohrmann@apache.org

ABSTRACT
In our more and more connected world where people are used to
managing their lives via digital services, it has become mandatory
for a successful company to build applications that can scale with
the popularity of the company’s services. Scalability is not the only
requirement but similarly important is that modern applications are
highly available and fast because users are not willing to wait in our
ever faster moving world. Due to this, we have seen a shift from the
classic monolith towards micro service architectures which promise
to be more easily scalable. The emergence of serverless functions
further strengthened this trend more recently. By implementing
a micro service architecture, application developers are all of a
sudden exposed to the realm of distributed applications with its
seemingly limitless scalability but also its pitfalls nobody tells you
about upfront. So instead of solving business domain problems, de-
velopers find themselves fighting with race conditions, distributed
failures, inconsistencies and in general a drastically increased com-
plexity. In order to solve some of these problems, people introduce
endless retries, timeouts, sagas and distributed transactions. These
band aids can quickly result in a not so scalable system that is brittle
and hard to maintain. The underlying problem is that developers
are responsible for ensuring reliable communication and consistent
state changes. Having a system that takes care of these aspects
could drastically reduce the complexity of developing scalable dis-
tributed applications. By inverting the traditional control-flow from
application-to-database to database-to-application, we can put the
database in charge of ensuring reliable communication and consis-
tent state changes and, thus, freeing the developer to think about it.
In this keynote, I want to explore the idea of putting the database in
charge of driving the application logic using the example of Stateful
Functions, a library built on top of Apache Flink that follows this
idea. I will explain how Stateful Functions achieves scalability and
consistency but also what its limitations are. Based on these results,
I would like to sketch the requirements for a runtime that can truly
realise the full potential of Stateful Functions and discuss with you
ideas how it could be implemented.

ACM Reference Format:
Till Rohrmann. 2022. Rethinking how distributed applications are built.
In The 16th ACM International Conference on Distributed and Event-based
Systems (DEBS ’22), June 27–30, 2022, Copenhagen, Denmark. ACM, New
York, NY, USA, 1 page. https://doi.org/10.1145/3524860.3544410

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DEBS ’22, June 27–30, 2022, Copenhagen, Denmark
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9308-9/22/06.
https://doi.org/10.1145/3524860.3544410

1 BIOGRAPHY
Till is a PMC member of Apache Flink and a cofounder of Ververica.
During his time at Ververica, his work focused on enhancing Flink’s
scalability and high availability. He also bootstrapped Flink’s CEP
and the initial ML library. Nowadays, Till focuses on making the
development of distributed applications easier by employing stream
processing techniques to this space.

https://doi.org/10.1145/3524860.3544410
https://doi.org/10.1145/3524860.3544410

	Abstract
	1 Biography

